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Abstract 

In this report many different aspects of the orbital constraint adjustment 

are discussed, comparing it in m y  ways with the corresponding geometric 

mode adjustment. The difficulty in modeling the orbit is the biggest draw- 

back to the orbital mode adjustment, and this is described at some length. 

It is shown that for any given set of data, the orbital constraint adjustment 

will produce a solution that is as good as or  better than the corresponding 

geometric mode adjustment. 

A description of the flow of a particular orbital constraint adjustment 

computer program is presented. The discussion of this specific program is 

used to illustrate several general computational and programming consider- 

at ions. 

A series of experiments involving BC-4 photographic plates is 

described. The path of the satellite appears as a trail of small dot-like 

images on these plates, and the possibility of imposing an orbital constraint 

on these trails is discussed. Results are  presented of the adjustment of 

these images in the short arc  orbital mode, and the results of several 

different configurations of geometric mode adjustments are given for the 

sake of comparison. These results indicate that for short enough arcs  

the modeling e r ror  may be suppressed and the orbital mode adjustment 

yields an unbiased solution which is almost the same as that obtained by 

the geometric method. However, the expected strengthening of the 

solution due to the imposition of the orbital constraint does not seem to 

be strong enough to show up in these experiments. Moreover, the short 

arc orbital constraint adjustment appears to be especially prone to a 

severe accumulation of numerical error ,  due to the presense of ill-condi- 

tioned matrices. 
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1. Introduction 

The goals of satellite geodesy have at times been classified as either geo- 

metric or  dynamic. The geometric goals involve the determination of observing 

station positions, while the dynamic goals involve the description of the earth's 

gravity field. These divisions correspond to the two main branches of classical 

geodesy; however, satellite geodesy differs from classical geodesy in that it 

allows the geodesist to extend his interest to descriptions of the earth that are 

continental or  global in scope. 

Invsstigations whose purpose is to accomplish geometric goals may be 

further classified into geometric and dynamic methods. 

treat the satellite much as  an unoccupied triangulation or trilateration station. 

On the other hand, the dynamic methods of geometric satellite geodesy (as 

differentiated from dynamic satelljte geodesy) exploit the fact that the path, or  

orbit, of the satellite obeys the physical laws of dynamics and can be treated by 

the methods of celestial mechanics. 

The geometric methods 

Although an artificial satellite obeys the same basic physical laws  as the 

moon and planets, its motion is generally much more complex, expecially in 

the case of the near earth satellites that are used for geodetic purposes. Where- 

as analytic theories, valid for fifty or  a hundred years, exist for the moon and 

planets, the motion of an artificial earth satellite may be accurately predicted 

a few days ahead only with great difficulty. 

The dynamic methods are generally recognized as being either long arc o r  
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short arc methods, depending on the mathematical description of the orbit they 

employ. Long arc methods characteristically employ complicated mathematical 

models that attempt to describe the orbit of the satellite exactly. Short arc 

methods are characterized by mathematical descriptions of the orbit that are 

simpler, but are only valid for short periods of time. Just where the dividing 

line between rrlongr' and "short" falls is pretty much up to the judgment of each 

author o r  investigator, but a definition that is considered reasonable by this 

author is discussed in section 2.3. 

Adjustments utilizing the geometric method are said to be of the "gee- 

metric mode, *(  while those utilizing the dynamic method are called "orbital mode" 

or "orbital constraint. 

observing stations utilize the geometric mode. The correctness of the geo- 

metric approach is demonstrated by the publication of high-precision global 

nets by the Smithsonian Astrophysical Observatory and by steady progress toward 

a global net by the U. S. Coast and Geodetic Survey. Although the adjustment of 

geodetic satellite data by the use of orbital constraints has been strongly urged 

by some investigators, orbital mode adjustments, where they exist, are gener- 

ally used as a tool of analysis rather than as an operational procedure. It ap- 

pears to this author that the features of the orbital mode adjustment, and its 

advantages and disadvantages relative to the geometric mode adjustment, have 

Most agencies currently adjusting networks o r  satellite 

not always been completely understood, For this reason many aspects of the 

orbital and geometric methods are compared throughout this report, from an 

analytic point of view in Chapter 2, from the point of view of computational and 
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programming considerations in Chapter 3,  and by some numerical results in 

Chapter 4. 
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2. Principles and Features of the Orbital Constrdnt Adjustment 

2.1 "Orbital Mode" and TfOrbital Constraint" Adjustments 

The terms "orbital mode" and "orbital constraintv1 are used somewhat 

interchangeably in the literature. It is worthwhile to examine carefully in just 

what sense these two terms are synonymous, and just what the constraint is 

that is being imposed. Such an examination serves to make clear under what 

circumstances the constraint is valid, and helps to define just how long is a 

vIshortlf arc, 

In the "geometric mode" of adjustment, the observation equation relates 

the position of the observing station to the position of the satellite at the time of 

the observation. The unknowns are (a) three components of position for each 

observing station, and (b) three components of position for the satellite for 

each instant at which an observation is made. Each satellite position is treated 

as independent of all others. The total number of satellite position unknowns is 

three times the number of distinct epochs at which the satellite was observed. 

Thus, geometric mode adjustments characteristically contain an extremely 

large number of satellite position unknowns. Since each satellite position is 

treated as an independent set of unknowns, it is necessary that the observations 

made at any instant be sufficient to determine the satellite position at that 

instant. Otherwise, the resulting normal equations will be singular and there 

will be no solution. For instance, observations of range from only two stations 

or  direction from only one station are not usable in the geometric mode. 
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The orbital constraint adjustment recognizes that the satellite position 

unknowns are not all independent, for the various positions of each satellite 

must all lie dong some smooth path, o r  orbit. 

relation among the satellite position unknowns which arise in the geometrical 

The constraint, then, is a 

form of the adjustmerat. If t t e  cocstraints are treated as relationships to be 

rigorously enforced in the adjustment, then the constraint equations may be 

solved for the various satellite position unkncwcs md tke resulting equations 

substituted into the observation equations. When this is dclne, the adjustment 

is said to be of the "orbital mode. ' I  

Since only six independent parameters are required to describe the true 

orbit, most forms of the orbital constraint equations introduce six new "orbital 

unknowns. I '  The exceptions to this are the empirical models of the orbit, in 

which more than six parameters may be used to describe the motion. Since a 

separate set of three constraint equations may be written for each satellite 

position, the large number of satellite position unknowns is reduced to a small 

number, usually six, of orbit unknowns. 

The foregoing discussion assumes that the observations depend only on 

the relative positions of the satellite and the observer. If any rates, for 

instance range rate, are observed, then the geometrical form will include satel- 

lite velocity as  well as  position unknowns, and the orbital constraint will also 

require that the various velocity vectors belong to some orbit. For the sake of 

simplicity the following discussions will assume that only position dependent 

quantities, such as range, direction, or range difference, have been observed, 



The generalization to include satellite velocity unknowns is straightforward, 

since an additional constraint equation may be written to relate each satellite 

velocity unknown to the orbit unknowns. 

To make the discussion more definite, the relationship between 'brbital 

mode" and "orbital constraint" may be formalized. Suppose that observations 

have been made from a network of ground stations to several satellites, o r  to 

a single satellite whose path is broken into several orbits. Let tj denote the 

jth time epoch, xi the position vector of the ith ground station, and YJk the 

position vector of the satellite in the kth orbit at time t,, both resolved in 

some suitable coordinate system. Let ti, be the actual observation from sta- 

tion i to satellite position Yjk, and let vi J k  represent the "accidental measure- 

ment error" component of the observation. Further suppose that the ViJk  behave 

as uncorrelated random variables with zero means and variances 0;k = l /WiJke 

Each individual observation gives rise to a single equation of the form 

V i j k  + &ijk = f(xf, YJk, tj)* (2.1) 

The function on the right hand side is expanded in a Taylor series about ap- 

proximate values of the unknowns, x: and yyk, and terms of order higher than the 

first are neglected in the usual manner. 

o r  

where 



The total set of observation equations is written in matrix form as 

V + L  = A X + B Y  

or  
(2.3) 

where the dotted lines indicate a partitioning. These equations are the basis of 

the geometric mode adjustment. If the rank of (Ai B) is equal to its column 

dimension, then a least-square solution is given by 

($*) = [(Ai B)'W(Ai j3)]-' (AI B)TWL (2.4) 

where W is a diagonal matrix containing the weights wtjk along its main diagonal. 

Let zk represent the set of parameters that describe the kth orbit. Then 

the knowledge that the various satellite positions must lie along an orbit is ex- 

pressed formally by the relation 

Here ejk represents the error  in the function g(zky tj). This function is the 

mathematical model for the orbit. However, we are generally either unable or  

unwilling to construct a mathematical model which describes reality exactly. 

Hence the term ejk is called the modeling error. The nature of this term is 

one of the most important considerations of the whole problem. It generally 

has several components, each of which requires careful consideration (see 

section 2.3). Under certain hypotheses, this term may be considered to act as 

a random variable with mean zero w d  variance O2(ejk) = where de- 

notes the expectancy operator. If the model represented by the function g is 
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constructed carefully enough, the modeling error  may be held to negligibly 

small magnitude, at least for short periods of time. 

Since the satellite position y jk contains three components, equation (2.5) 

is actually a set of three eqiiations. There will be as many of these sets as 

there are satellite positions. If the satellite velocity were being considered, 

it would be possible to modify the meaning of e and g and write a relationship 

Equation (2.5) may be linearized by an expansion around approximate values 

of the orbit parameters zi, yielding 

or 

The total set of such linearized equations is written in matrix form as 

E - t Y  = FZ. (2.7) 

These are called constraint equations , since they represent constraints among 

the parameters Y. 

There are several alternative methods of incorporating these equations 

into an adjustment. It is necessary to make one of two hypotheses about the 

modeling errors  E: either (a) the elements of E behave as random variables, 

so that E may be treated as a vector random variable with zero mean and co- 

variance matrix €PET]  = x,; o r  (b) the elements of E, whether random ornot, 
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are so small that the elements of the product BE are negligible in comparison 

with those of V. If neither of these hypotheses can reasonably be made, there 

is no possibility of obtaining an honest adjustment, and a new model for the 

orbit must be constructed or  the whole experiment must be redesigned. 

Jf hypothesis (a) is used, thenequations (2.7) are of exactly the same form 

as equations (2.3), and may be treated as additional observation equations. 

Thus the total set of equations becomes 

and the weight matrix for these equations is 

W 0 

(0 c:I - 
If hypothesis (b) is used, then equations (2.7) may be written simply 

Y = F Z  and are treated as conditions to be rigorously enforced in the adjust- 

ment. The least-squares solution of (2.3) , subjected to the conditions Y = FZ, 

is found by minimizing the function 

cp = V W V  + AT(Y - FZ) + (Y - FZ)TA 

where A is a column matrix of Lagrange multipliers. Setting the variations of 

cp with respect to X, Y, Z,  and h each equal to zero produces the four matrix 

equations 

ATWV = 0, 

- F ~ A  = 0, 

BTWV+A = 0, 

Y - F Z  = 0. 

9 



Substituting V = AX + BY - L from equation (2.3) and rearranging, these are 

written in matrix form as 

The solution in the form of either equations (2.8) o r  (2.9) is properly called 

an orbital constraint solution, because the constraints appear explicitly. 

Another possibility is to solve equations (2.7) for the satellite position 

unknowns Y and substitute into equations (2.3), obtaining 

V + L  = A X + B ( F Z - E )  

or 
( V + B E ) + L  = (A BF) (;) (2.10) 

If hypothesis (a) is used, then this is a reduced set of observation 

equations, with error  term V + BE. The minimum variance solution for 

requires that the weight matrix be inversely proportional to the covariance 

matrix of this new error  term, which is 

c[(V + BE) (V + BE)’] = W-’ + BCEB’. 

Even though W-’mmay be adiagonal matrix W’+ 

inversion may be a tedious process. Therefore this form of solution is unde- 

,BTis a full matrix and its 

sirable and is probably never used. 

On the other hand, if hypothesis (b) is used, E may be neglected and 

equation (2.10) may be simplified to 

X 
V + L  = (A BF) ( z )  (2.11) 

10 



The minimum variance solution to this set of equations is then the solution to 

or  

(A BF)~W(A BF) (E) = (A BF)'WL 

F ~ B ~ W A  F ~ B ~ W B F  
(2.12) 

The solution in this form is properly called an orbital mode adjustment. This 

term could also be applied to the minimum variance estimate of X and Z in 

equation (2.10). This solution would be given by equations of the form (2.12), 

but W would be replaced by (W" + BEE BT)". 

A few algebraic manipulations will show that equation (2.9) is exactly 

equivalent to equation (2.12). The second equation in (2.9) is solved for Y, 

and this is substituted into the other three equations, giving 

(A'WA - A~WB(B~WB)'B~WA)X - A~wB(B~wB)-'A 

Y = (B~wB)-'(B'wL - B~WAX - A) I . (2.9a) = A ~ W L  - A~WB(B'WB)-~B~WL 

- F ~ A  = o 

(B~WB)-~B~WAX + (B~WB)"A + FZ = (B~WB)-'B~WL J 
The last of these equations is solved for h, yielding 

A = B ~ W L  - B~WAX - B~WBFZ. 

This is then substituted into the middle two equations of (2.9a) giving 

A~WAX + A~WBFZ = A'WL, 

F'B'WL - F~B'WAX - F~B~WBFZ = 0, 

11 



or  

ATWBF ) (z) = ( ATWL ) . (2.9b) 
F ~ B ~ W A  F ~ B ~ W B F  F~B'WL 

But this is exactly the same as equation (2.12). This showns that the orbital 

constraint solution and the orbital mode solution are indeed algebraically 

equivalent, although they are different ways of approaching the same problem. 

Since equation (2.10) is a reduced form of (2.9), it is the much more common 

practice to form the observation equations in equation (2.11) directly. In 

effect, this imposes the constraint algebraically rather than numerically. 

2.2 Simultaneous and Orbital Modes of Scheduling Observations 

Most observing systems observe only one component of position, such 

as range, or  two components, such as direction. If any of these observations 

are to be usable in a geometric mode adjustment, it is necessary that the 

observations be made simultaneously from at least two or  three stations so 

that the satellite position will be determined and the adjustment will not be 

singular. Because of this, the geometric mode of adjustment is often called 

the l%imultaneous mode. Acutally, this is somewhat misleading, since a 

%imultaneous adjustment" means something quite different. What is really 

meant is that the observations have been made in a simultaneous mode (or 

reduced to simultaneity) in order that the adjustment of the observations 

might be performed in a geometric mode. 

In the orbital mode , there is no need for Simultaneity of observations. 

Moreover, there is no need to schedule observations only for times at which 
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the satellite is visible from more than one station. This allows more obser- 

vations to be made, and also allows very isolated stations to participate in a 

network, Because of this feature, an orbital mode adjustment has often been 

envisaged as a method of tying together datums and tying isolated islands to 

mainland datums (see Figures 2.1 and 2.2). 

In practice,use is seldom made of this feature. Most U, S. agencies which 

are engaged in the tracking of satellitesfor geometric purposes plan and execute 

their observations in the simultaneous mode, For instance, one may cite the 

SECOR program of the U. S. Army Map Service, the PC-1000 program of the 

U. S. Air  Force, and the BC-4 program of the U. S. Coast and Geodetic Survey. 

As far a s  is known to this author, only those agencies which have an orbit 

determination mission in addition to their geodetic mission observe geodetic 

satellites in a nonsimultaneous mode. 

program of the Smithsonian Astrophysical Observatory and the U. S. Navy's 

TRANET program have orbit determination as well as geodetic missions. 

For instance, the Baker-Nunn camera 

2.3 The Equations of Motion 

The motion of the satellite through space is governed by Newton's 

Second Law, which may be stated as the vector differential equation 

.. 
X = F  (2.13) 

.. 
where X is the acceleration vector of the satellite and F is the force per 

unit mass acting on it. Since this is actually a set of three second order 

differential equations, its solution contains six arbitrary constants of integra- 

tion. These six constants may take several different forms, depending on 
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the variables in terms of which this differential equation is solved. However, 

the important principle is that the orbit is completely characterized by only 

six nunibers, and it is for this reason that most models for the orbit employ 

six "orbit unknowns. " 

Formally, the solution to this differential equation may be written 
t 

to 
X(t) = s F(t )dt + X(t 0 )  

or  

t .  

to 
t t  

to  to 

X(t) = J X(t)dt -t X(to) 

= J J F(t)dtdt + (t - to) x(to) + X(to) 

t 

to 
X(t) = J(t - T)F(T)dT + (t - to)%&) + x (to). 

(2.14) 

(2.15) 

Here the constants of integration are the position and velocity vectors at the 

epoch time, X(b) and X(t0). 

The complexity of the force function F determines the ease with which 

the indicated integration may be carried out. If it consists solely of a central 

force field, then the motion is simple two body motion and a closed form 

solution may be written in terms of the relatively simple equations of the 

Keplerian ellipse. Because of several factors, principally the oblateness of 

the earth, the forces acting on a near earth satellite deviate slightly from those 

of a central force field. Since these deviations are small, the actual motion 

of an artificial satellite greatly resembles Keplerian motion. The small 

deviations in the force field are termed ''perturbing forces, If and the actual 

16 



motion is called "perturbed two-body motion" o r  "perturbed Keplerian motion. '' 

Since the acceleration in the actual force field differs only slightly from that of 

a central force field: the actual motion departs only slowly from a Keplerian 

ellipse. However, the important mathematical difference between motion in the 

actual force field and motion in a central force field is that no closed form 

solution exists for the equations of motion (2.13) in the case of perturbed two 

body motion. Obviously, the solution may always be obtained by a numerical 

evaluation of the integral in (2.14), although the numerical integration may 

require a very large number of computations. A n  approximate expression for 

the motion may also be obtained by expanding the solution in a series in powers 

of the small quantities that describe the perturbing forces. These analytic 

solutions contain both secular and periodic functions of time. They are 

typically carried to a higher order in the secular terms than in the periodic 

terms, so that they describe the orbit with moderate accuracy for long periods 

of time. 

Because no closed form solution exists for perturbed two body motion, 

the geodesist is faced with a choice of a great many approximate solutions which 

may serve as a model for the orbit. 

accuracy required and the length of time for which an accurate solution is re- 

quired. Typically, the Keplerian orbit has moderate accuracy for very short 

periods of time. The numerical integration schemes are very accurate for 

short periods of time; however, they always include some numerical error,  

which generally accumulates with time. The analytic solutions are most suitable 

This choice is usually dictated by the 
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for describing the orbit over many revolutions. However, since they describe 

the large motions rather than the small motions of the satellite, they are no 

more accurate than the simple Keplerian orbit for describing the motion over a 

small fraction of a revolution. 

Several comments may be made concerning the formal equations of mo- 

tions: 

(1) Equation (2.13) is strictly valid only in an inertial coordinate system. 

As far as  can be detected, a nonrotating coordinate system centered at the 

barycenter of the solar system satisfies this requirement. However, the satel- 

lite is carried along by the earth in its orbit, so that it is more natural to w r i t e  

the equations of motion in terms of an earth centered coordinate system. If 

the equations of motion are written in terms of a barycentric system and then 

transformed to a nonrotating coordinate system centered at the earth's center 

of mass, the force function will consist of a dominant force produced on the 

satellite by the earth, plus a small perturbing force caused by the differences 

between the forces produced by the sun on the earth and on the satellite. The 

difference between the forces produced by the moon on the earth and on the 
- 

satellite may similarly be considered as a small perturbing force. 

(2) Equation (2.13) describes a purely Newtonian motion. This is not 

exactly the true motion in the sense that a geodetic satellite moves with 

sufficient velocity that relativistic effects should be present. However, the 

relativistic effects may be treated as small perturbations of the Newtonian 

motion, specifically as a small contribution to the secular motion of the ar- 

gument of perigee [Danby, 1962, p. 661. For orbits lasting several minutes, 
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or  even several weeks, the relativistic effects on the orbit are much too small to 

be detected, and are never considered for the purpose of geodetic investigations. 
/, 

(3) The time appearing in equation (2.13) is a purely Newtonian, or  uni- 

form, time. This can cause some confusion, since UT1 also enters the ob- 

servation equation in the adjustment to relate an earth-fixed coordinate sys- 

tem to a nonrotating system. 

The force vector on the right-hand side of equation (2.13) theoretically 

includes all forces acting on the satellite, both gravitational and nongravita- 

tional. Obviously it is impossible to model accurately all the forces which 

could act on the satellite, and some degree of approximation is necessary. 

The amount of approximation made in modeling the forces determines the ease 

with which the integral in equation (2.15) may be evaluated. Unfortunately, 

using an approximate force model also restricts the time interval for which 

the solution is accurate. 

The important forces acting on a near earth satellite are the attractions 

of the earth, the attractions of the moon and sun, air drag, and solar radiation 

pressure [Mueller, 1964, p. 1731. The attraction of the earth is usually written 

as  the gradient of the gravitational potential of the earth, where the potential 

is expressed as a series of solid spherical harmonics, i. e., 

F = QV 

Since the earth is nearly spherical, the most influential term is the central force 
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GM 
r term (Jo harmonic) -. It is nearly 1000 times larger than the Jz (or oblate- 

ness) term, which in turn is about 1000 times larger than any other effect. 

Lunar and solar forces are even smaller and are important only for satellites 

higher than those ordinarily used for geodetic purposes. Air drag is important 

only for very low satellites o r  those with a large area to mass ratio. Solar 

radiation pressure is a very small effect which is noticeable only for satellites 

with a very large area to mass ratio, such as the balloon satellites. 

There are many other considerations that affect the accuracy with which 

the motion may be modeled. To discuss the problem systematically, it is 

possible to divide the modeling errors into four types, and it is usually neces- 

sary to consider all four when discussing a model for the orbit: 

(1) Truncation o r  approximation errors in the force function. These are 

errors  caused by including only the major forces acting on the satellite on the 

right-hand side of equation (2.13). The force function may be as simple as the 

central body force (zero4rder harmonic) exerted by the earth, o r  it may in- 

clude forces arising from zonal and tesseral harmonics in the geopotential, 

lunar, and possibly solar, gravitational forces, and a model of the air drag 

exerted by the atmosphere. 

(2) Errors in the constants of models that are included in the force func- 

tion. These would be principally errors  in the geopotential coefficients used to 

describe the gravity field (including the JO = GM term), and errors  in the model 

used to describe the variation of density in the atmosphere. Although the ex- 

pression of the gravity field may be correct in form, the numerical constants 
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included with the expression may not be absolutely accurate. The determina- 

tion of these constants is another task of geodesy, but since they must be 

determined by observations, their numerical value can never be absolutely 

determined. 

(3) Errors in performing the integration indicated in equation (2.15). 

If any perturbing forces are  included in the force function, the integration may 

be performed only approximately. The method of integration used may be 

either analytical or  numerical. The presence of integration errors means 

that even if all forces were included in the force model, and even if  all numeri- 

cal constants included in the model were known exactly, the model for the orbit 

would still contain some error. 

(4) Errors due to using a rotating coordinate system, such as the true 

sidereal system of date, o r  a nonuniform time, such as Universal Time (see 

[Kozai, 19601). 

There is also the possibility of modeling the motion of the satellite by an 

empirical orbit, in which the elements of a Keplerian ellipse are expressed as 

polynomial (and possiblity trigonometric and hyperbolic) functions of time 

[Mueller, 1964, p. 2131. These empirical expressions are, strictly speaking, 

not solutions to the differential equations of motion at all, and the accuracy 

with which they describe the actual orbit cannot be discussed from exactly the 

same point of view. Although they resemble the analytic solutions in form, 

they contain more than six arbitrary constants. A refinement of this approach 

uses empirical expressions to model the secular variations of the elements, 

while the analytic expressions of Kaula are used to compute the short period 
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perturbations [Gaposchkin,1966, p. 100; Kaula, 1966, p. 371. All of these con- 

siderations affect the accuracy with which the position of a satellite may be 

predicted, given a set of initial conditions o r  constants of integration. The 

initial conditions usually appear as either six Keplerian elements at a certain 

epoch time, o r  else as three components of position and three components of 

velocity at the epoch time. If the actual orbit and the orbit model start with 

the same set of initial conditions, the modeling error  is necessarily zero at 

the epoch time. As the time from the epoch increases, the position error of 

the prediction will  typically contain both secular and long period terms. The 

type of model used determines the amplitude of these terms. In general, the 

periodic terms produce the largest contribution to the error  at first,  after 

which the secular terms predominate. 

However, one does not generally know the epoch elements; these are 

the orbit unknowns in the orbit constraint adjustment. The important question, 

therefore, is not how well the model may be used for predictions, but how 

well the model may be made to f i t  the actual orbit by adjustment of the initial 

conditions. For short periods of time, it is sufficient to consider the actual 

orbit to be one generated using a full expression for the gravitational potential 

of the earth. The effect of further truncation of the force model may then be 

studied by comparison with such a reference orbit. 

Figures 2.3 - 2.5 were obtained by numerically integrating two orbits 

having the same initial conditions for 1000 seconds. The force function for the 

first orbit was the geopotsntial given by the SA0 G8 set of coefficients. This 

set of coefficients was  truncated at the seventh degree and seventh order. The 
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second orbit was generated using Kozai's zonal coefficients through degree four. 

The position differences in X, Y, Z between the two orbits were then used as 

the observations in a least squares adjustment in which the unknowns were the 

initial conditionsof the second orbit. The residuals plotted are  the position 

differences in X, Y, Z before and after adjustment. These graphs were gene- 

rated by D. Brown Associates using orbital elements typical of GEOS-A. They 

illustrate that for sufficiently short arcs, an adjustment of the initial condi- 

tions of the orbit can compensate for the systematic error  introduced by 

using a geopotential function limited to zonal harmonics [Brown, 19673. 

Figures 2.6 - 2.8 compare a Keplerian orbit to a reference orbit ob- 

tained by using only Kozai's zonal coefficients in the same manner. These 

graphs were generated by this investigator at OSU using orbital elements typical 

of the PAGEOS satellite. The reference orbit was generated using Hartwell's 

method of recursive formation of partial derivatives [Hartwell, 1967 1. The 

graphs illustrate that even after the adjustment of initial conditions, the f i t  of 

the Keplerian orbit to the reference orbit is not especially good. Since this 

reference orbit deviates from the actual orbit by less than a meter, the graphs 

may be interpreted as representing the f i t  of a Keplerian orbit to the actual 

orbit. 

The differences in all three coordinates were used as observations in 

these adjustments. In practice all three coordinates of the satellite are rarely 

observed. If right ascension and declination measurements are used, only two 

coordinates may be said to be observed, and with range measurements only 

one coordinate is observed. Figures 2.9 - 2.10 illustrate that a much better 
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f i t  may be obtained when only two coordinates are observed. Naturally, the 

residual after adjustment in the third coordinate is very large in this case. 

Putting the information contained in all of these graphs together, it is possible 

to conclude that a Keplerian orbit may be found which represents the actual 

orbit with an accuracy of a few meters o r  better in two coordinates (but not 

three) for a time period of 1000 seconds. 

The modeling error  term e j k  of equation (2.6) designates the error  re- 

This maining in the modeled orbit after adjustment of the initial conditions. 

is seen to be much smaller than the error  of using the same model for pre- 

dictions. 

given model determines the length of arc for which the orbit constraint is valid. 

"Small, ' I  in this case, should mean at least an order of magnitude smaller than 

The length of time for which this error  may be kept small for any 

the observational accuracy. The observational accuracy of geodetic tracking 

equipment is of the order of one o r  two seconds of arc in direction for optical 

systems and several meters in range for electronic and laser systems. There- 

fore,the modeling error  should be kept to ten meters o r  less for optical sys- 

tems o r  a meter o r  less for electronic systems if it is to be neglected. It is 

now possible to offer a definition of a '!short arc. '' A short arc is the max- 

imum length of arc over which the modeling error of a simple model, such 

as the Keplerian ellipse or a model using a geopotential with only zonal 

terms, is not greater than a few meters. For ageodetic satellite this is about 

1/8 revolution, o r  about 15 minutes for a 2  hour satellite such as GEOS-A [Brown, 

19681. This is also the approximate time required for the satellite to pass over a - I__  -- - - -- - 

continental network of stations. Thus a "short arc" is pretty much the same 

as a "pass. f t  
32 -. . 



In practice the actual path of the satellite is broken into many short 

arcs o r  segments, and each segment is treated as an independent orbit. Thus 

an adjustment utilizing many independent "orbits" of the same satellite is indis- 

tinguishable from one involving many different satellites. If a satellite is 

tracked by a network of continental extent o r  less, or  if the tracking stations are 

grouped together so that they may observe the satellite in the simultaneous 

mode, then the segmenting of the actual satellite path may be done in a natural 

way, with each orbit corresponding to a period of tracking by a group of sta- 

tions. 

2.4 The Effect of Modeling Errors on the Adjustment 

The question of whether the modeling errors  behave as  random variables 

is very complicated, since there are so many factors contributing to the model- 

ing error. By the nature of the least-squares solution, the mean of the model- 

ing errors  will be near zero. However, if the largest component is the trun- 

cation error ,  there is no reason to suspect that they behave randomly. Indeed, 

the modeling errors shown in Figures 2.6 - 2.8 are by no means random, but 

keep the ssme algebraic sign for long periods of time. It appears that treating 

the modeling error  as random would have a systematic effect on the station 

determination, at least for a single pass. It has been argued that although the 

effect of the modeling error  may be systematic for a single pass, the effect 

balances out when a large number of passes are considered. It is by no means 

clear in any given experiment whether this is true at all, or ,  if it is, how many 
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passes must be considered in order for the systematic errors to average out 

to a negligibly small amount. Therefore, the only safe approach is to ensure 

that the modeling errors,  systematic or not, will be kept much smaller than 

the accidental measurement errors. 

There are a few error sources which may reasonably be assumed to act 

as  random variables with zero means. Very short perturbations, whose 

period is shorter than the interval between successive observations of the 

satellite, may be treated as random variables that are uncorrelated between 

observations. Numerical integration error  may be treated as a stochastic 

variable. 

Errors in the adopted values of the constants in the model present a 

slightly different problem, since it would be possible to solve for the most 

likely values of these constants along with the other parameters of the adjust- 

ment. For instance, it is possible to include a finite set of the coefficients 

of the geopotential as parameters in the orbital mode adjustment. However, 

observations designed for geodetic purposes will usually give an extremely 

poor determination of the geopotential coefficients, especially if only short 

arcs are tracked. Therefore it is usually more desirable not to solve for 

these coefficients, but to treat them as '?unestimated parameters. 

are determined from observations, the adopted numerical values of the geo- 

potential coefficients have associated expectancies and variances. Although 

the effects of errors in the adopted values may be .systematic for a particular 

set of coefficients, they may also be treated as statistical quantities with zero 

Since they 
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expectancies and known variances. If these variances are not negligible in 

comparison with the observational variance, the statistics of the adjustment 

may not be reliable. The residuals will reflect both the accidental measure- 

ment error and the effects of modeling error ,  and so may not be good indicators 

of the quality of the observations. It c m  be shown that in.the presence of 

unestimated parameters, the estimate of the variance of the observation of 

unit weight will be too large and the weight coefficient matrix (inverse of 

normal equation matrix) will be too small [Schwarz, 1967bl. 

. 

2.5 Orbit Constraint Adjustment and Orbit Determination 

There are many strong similarities between the orbit constraint ad- 

justment and the method of orbit determination known in celestial mechanics 

as "Differential Correction. t t  Differential Correction is a least-squares 

adjustment of the orbit parameters, usually with the coordinates of the tracking 

stations held fixed. However, if the coordinates of the tracking stations are 

not well known or if they are located on different datums whose relationship is 

not well kaown, then it may be necessary to include the station coordinates 

as unhmwns in the orbit determination. In this case the system of equations 

to be solved will be exactly the system that arises in the orbit constraint 

adjustment , since the same kind of observations and same unknowns enter 

both problems. Thus the more general form of differential correction (in- 

cluding station unknowns) and the orbital constraint adjustment have identical 

algebraic structure; however, they differ widely in purpose, emphasis, and 
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experimental design . 
In the orbital constraint adjustment, only the station unknowns are of 

interest. The orbit unknowns are considered to be auxiliary, or "nuisance, '( 

parameters. The geodesist is not concerned whether the orbit determined is 

the correct one or  not, as long as  it fits the observations reasonably well. 

Observing networks are designed and observations are generally scheduled 

so as to optimize the geometry of the station determination, with little or no 

thought given to how well the orbit will be determined. 

In constrast, the station unknowns are the nuisance parameters in the 

orbit determination problem. The investigator is usually not the least bit 

concerned about the station determination, but is very concerned with 

determining the correct orbit, since the orbit determination will very likely 

serve as the basis for predictions. The observing schedule and tracking net- 
- 

work is generally designed to optimize the orbit determination. A strong orbit 

determination requires that observations be taken from points that are fairly 

equally spaced all the way around the orbit. Observing networks that have been 

designed for geodetic purposes usually serve very poorly for orbit determination 

purposes; although the quality of each individual observation is very high, they 

are  all usually concentrated on a small portion of the orbit, with no observa- 

tions being taken on a large part of the orbit. 

2.6 Comparison of Covariance Matrices Arising from the Geometric and 
Orbital Mode Adjustments 

A question that is often the subject of considerable discussion is whether 
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the geometric mode or the orbital mode adjustment yields the better solution 

when both use exactly the same data. Intuitively, the orbital mode should give 

the stronger solution, since it is given more information about the real world 

(i. e., the fact that the various satellite positions must lie along some orbit). 

To prove this it is necessary to define exactly what is  meant by a better 

adjustment. 

Let there be given a set of observations of a geodetic satellite. Assume 

that these observations have been performed in the simultaneous mode, so 

that there are at least 3 observations of each satellite position. It is well 

known that at best the geometric observations alone will only determine a 

rigid network of points in space. It is necessary to fix this network to some 

coordinate system, usually by specifying the coordinates of one station in that 

coordinate system. 

or by constraining its coordinates to some a priori values with proper weights. 

In the first instance, the station to be fixed may be eliminated from the ad- 

justment altogether. 

other stations relative to the one that was fixed. 

This may be done either by completely fixing the point, 

The solution gives positions and uncertainties of all 

For instance, if the coor- 

dinates of one station on a certain datum are held fixed, the coordinate systca 

of the solution may reasonably be said to be the system defined by that datum. 

On the other hand, it is possible to specify a priori values for the coordinates 

of some station in a geocentric system, and to constrain the adjustment to 

these values with a weight matrix that is inversely proportional to the covariance 

matrix of this knowledge. Since these constraint equations are necessary to 
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ent singularity of the normal equations, it is no their weights 

be at all On the contrary, geocentric 

m is well kno 

of the position of th 

stations by the adjustment, so that the adjusted coordinates 

be said to be geocentric. In this case, no adjusted geocentri 

is  less uncertain than the constrained position. 

The orbital mode adjustment does not have this problem of fixing the 

coordinate system. Since the center of mass of the earth lies at one of the foci 

of the orbital ellipse, the geocenter is determined. In practice this detemina- 

tion is usually quite weak, and it is best to include a priori values of the geo- 

centric coordinates of at least one station [Brown, 1968 1. 

In addition, the geometric mode adjustment will be singular if the 

scale or orientation of the coordinate system is not specified. For instance, if 

only range measurements are used the system will lack orientation, and if only 

direction observations are used the system will lack scale, In the first case 

three components of direction among the stations must be specified, and in the 

second the distance between two stations must be specified. Again, this 

a priori bowledge should be weighted inversely proportional to its covariance 

These a priori constraint equations may be linearized aro 

r as the observation equa- 

ns ted CX=O 
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and let the weight matrix of these equations be W,. Then the total set of 

equations for the geometric mode adjustment is 

(2.16) 

with weight matrix 

where the notation is that used in section 2.1. 

The same a priori information about the stations may also be made 

available to the orbital mode adjustment. The total set of equations for the 

orbital mode adjustment is then 

(2.17) 

with the same weight matrix as  in (2.16). These two sets of equations are  then 

based on exactly the same information, and may be compared. 

Let X, be the least-squares solution for the station unknowns from the 

geometric mode adjustment, let Xb be the corresponding solution from the 

orbital mode adjustment, and let e,  , Cb be their respective covariance ma- 

trices. xb is then said to be a better estimate of X than X, if is "smaller" 

than e,. Y3maller" here means that the difference e,  - c b  is positive definite, 

o r  at least positive semi-definite. This definition is entirely reasonable , 

since f*bestlf means the minimum variance solution, o r  the solution whose 

covariance matrix is "smallest. '! This is also equivalent to saying that the 
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trace of & is less then the trace of E,, or  that the rms  uncertainty of the 

elements of X, is less than that of the elements of Xg. 

The covariance matrix of a least-square estimate of X is given by 

=&Q (2.18) 

where Q is the partition of the inverse of the normal equations that pertains 

to X, and U: is a constant of proportionality called "the variance of the ob- 

servation. of unit weight. ? ?  In many adjustments this constant is not suf- 

ficiently well known, and must be estimated from the residuals of the adjust- 

ment. Nevertheless, (2.18) remains the correct expression for the covariance 

matrix. Since the system of equations (2.16) and (2.17) express the same 

observations and have the same weighting matrix, the constant 0: is the same 

in both cases. And since 

follows that cb is smaller than E, if and only if Q b  is smaller than Q9.  

is a positive scalar multiplier, it immediately 

As shown in section 2.1, the system of equations (2.17) for the orbital 

mode adjustment is equivalent to the system (2.16) for the geometric mode 

adjustment subject to the constraints 

Y = FZ. (2.19) 

Since the geometric mode adjustment is assumed to exist, the orbit 

constraint solution may be formed sequentially; i. e. , the system of equations 

(2.16) may be solved first and then the constraints may be added, yielding a 

solution which is algebraically equivalent to the least-squares solution of 

(2.17) [Schwarz, 1967a, p, 373. The normal equations corresponding to the 

geometric mode aGjustment are 

(2.20) 
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Let N denote the matrix of coefficients of these normal equations and let M 

denote its inverse. Further let M be partitioned in the same manner as N, 

i. e., 

A ~ W A  + cTwcc A ~ W B  

B ~ W A  B ~ W B  ) = (: 3 N =  ( 

MI corresponds to the unknowns X and may be identified with Qg. Explicitly, 

MI = Qg = [ATWA + CTWcC - ATWB(BTWB)-'B'WAI-'. (2.21) 

To add the constraint to the solution of (2.20), the constraint equation 

(2.19) must be expressed in terms of the same unknowns X and Y. For this 

purpose let p be the number of satellite position unknowns and r the number 

of orbit unknowns. Then F is a p x r matrix. For the orbital mode solution 

to exist at all, it is necessary that r be less than or  equal to p and that F 

have rank r. Lets =p - r and let F be partitioned into a nonsingular r-square 

matrix F1 and an s x r matrix Fz. Let Y be similarly partitioned into Yl and 

Y2, i. e. , 

Equation (2.19) may now be written as the two equations 

Solving the first of these for Z, and substituting into the second, 
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or  

z = F;" Yl, 

yZ= F ~ F ? Y ~ ,  

(2.22) 

Let G = (-Fa F;" I) so that (2.22) may be written 

(2.23) 

Equation (2.23) expresses the orbital constraint in the unknowns X and Y, so 

that it may be added sequentidy to the solutionof (2.20). The weight coefficient 

matrix of the solution to (2.20) is M. Let the weight coefficient matrix after 

the addition of the constraints be denoted Mi and identify Qb with an upper 

left partition of MI Then M' is given by [Schwarz, 1967a, p. 38; Uotila, 1967, 

-1 
p. 651 

M' = M - M (:I [(O G)M ("G.)] (0 G)M. (2.24) 

Carrying through the indicated multiplications 

0 

G' (CM3 GT) -' G 
M ' = M - M  

.... .... 
(2.25) 

Only the upper left partition of the second matrix on the right is indicated, since 

it is the only one of immediate interest. Finally, writing only the upper left 

partition of (2.25), 
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Qb = M; '= Qg - M2GT(GN4GT)-' GML, 

o r  

Qg - Qb = M2GT(GM3GT)-'GM:. (2,261 

By tracing through the definitions of & , G, and Mz, it may be easily seen th3-t 

G&GT is positive definite and that Q g  - Qb is positive semi-definite. 

This shows that Q b  is "smaller" than Qg. It means that if the modeling 

errors are negligible, so that the orbit constraint solution is a proper minimum 

variance adjustment, then the orbital mode adjustment is f1better17 than the 

geometric mode in the sense that it will produce an estimate of the station posi- 

tions with a smaller covariance matrix. 

In practice, it is traditional to estimate the unit variance 0; from the 

residuals of the adjustment rather than rely on an a priori value. It may easily 

happen that the estimated a: from the orbital mode adjustment is larger than 

that from the geometric mode adjustment, and the orbital mode adjustment may 

thus give a 'larger" covariance matrix. However, it is important to note that 

if the modeling errors  are negligible, then both adjustments will yield unbiased 

estimates of &. Let V, be the residuals from the geometric mode adjustment 

and Vb those from the orbital mode adjustment, i. e., 

v, = Ax, - L, 

Vb = A x b  - L. 

Let n be the number of observations and m the number of stations. Then the 

degrees of freedom are  n - m - p in the geometric case and n - m - r in the 

orbital case. 
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Further. 

and 

so that 

Also, 

n - m - r  1. 
€[v;wvTgl = 

Q cv; W v ' b l  n - m - p  

This means that the addition of the orbital constraint would cause some of the 

residuals, and the weighted sum of squares of residuals, to increase from their 

values in the geometric solution. However, the decrease in the degrees of 

freedom exactly compensates for this increase, so that the expectancy of the 

estimated 0: remains the same. 

This development yields a valuable tool for recognizing the presence of 

The adjustment of a large sample of data modeling errors  in the adjustment. 

in the geometric mode will yield a fairly good idea of what the quality of that 

kind of data really is. This knowledge may be used to form an a priori value 

for the unit variance of that kind of data. Then, when more data of the same 

kind is adjusted in the orbital mode, the estimated unit variance may be tested 

against its a priori value by the X 2  test. If the difference is significant fer 

several different sets of data, the cause may very likely be the presence of sig- 

nificant inadequacies in the model for the orbit. 
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2.7 Summary of the Advantages and Disadvantages of the Orbital Mode 
Adjustment 

In the preceding sections many features of the orbital mode adjustment 

have been discussed. Many of these may be considered to be advantages o r  

disadvantages when compared to the alternative geometric mode adjustment. 

The advantages are: 

(1) The orbital mode brings more information about the real world 

into the adjustment. 

a better determination of the station positions, 

"better" is interpreted to mean possessing a TfsmallerfT covariance matrix. 

Therefore one would intuitively expect that it would yield 

This intuition is correct, if 

(2) The orbital mode adjustment contains fewer unknowns, and there- 

for more degrees of freedom. 

tions, the statistics of the adjustment wil l  be more reliable. If the total set of 

normal equations is stored and solved by elimination methods, the fewer un- 

knowns will also mean less storage requirements and fewer arithmetic opera- 

tions. However, most investigators take advantage of the patterned form of 

This means that, apart from other considera- 

the normal equations and easily reduce the problem to one involving only the 

station unknowns, so that the number of auxiliary unknowns ceases to be a 

consideration. 

In some cases, such as the measurement of integrated Doppler count, 

the number of unknowns may grow almost as fast as the number of observations. 

In such a case it may be necessary to reduce the number of unknowns by 

imposing an orbital constraint if an overdetermined solution is to exist at all. 

(3) The orbital mode adjustment gives a solution in a geocentric rather 
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than a relative coordinate system. It also gives information about the scale of 

the system through the adopted value of the constant GM. However, the 

determination of the geocenter and the scale by short arcs is too weak to be 

an important advantage. 

(4) All observations from a given station, whether o r  not matched with 

observations from other stations, are potentially useful. This advantage 

would be of greater importance if more unmatched data of geodetic quality were 

available. Also, there is a sufficient abundance of data, almost all of it taken 

in the simultaneous mode, from almost all stations that have performed ob- 

servations for geodetic purposes. 

The disadvantages of the orbital mode adjustment are: 

(1) It is necessary to construct a model for the orbit. The actual motion 

of a close earth satellite is extremely complex, and any attempt to describe the 

motion over a long arc becomes very involved. If only a simple model, such 

as the Keplerian ellipse, is used, then the modeling error  is an important 

consideration, and one must break the actual path into short arcs, whose 

duration does not exceed 1/8 of the satellite's period. 

(2) Some hypothesis about the nature of the modeling error  must be made. 

It may take a great deal of experimentation to determine the nature of the 

modeling error  for a given model, given satellite, given type of data, and 

given tracking station configuration. 

(3) Approximate values of the orbit unknowns must be available. The pre- 

liminary determination of the orbit will  usually require a separate program and 
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a good deal of additional data handling. In the case of very short arcs, the 

preliminary orbit may be difficult to determine and unreliable. 
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3. Computational and Programming Considerations 

There are many different forms which the mathematical structures for 

the orbital mode adjustment may take. Aside from the considerations discussed 

in section 2.3, orbit models may differ in the set of parameters used to charac- 

terize the orbit and the specific sequence of transformations used to update 

the satellite position. Furthermore, mathematical structures differ in the 

specific sequence of transformations used to obtain the computed value of the 

observed quantity. In this chapter the FORTRAN IV cornput%- program which 

was used to perform the short-arc experiments described in Chapter 4 will be 

described and discussed. This program computes differential corrections to 

station positions and orbit unknowns, based on observations of topocentric right 

ascension, declination and range. The orbit is modeled by empirical expres- 

sions of the type used by the Smithsonian Astrophysical Observatory. 

program accepts any mixture and number of range and direction observations, 

any number of orbits, and up to 150 observing stations. 

The 

3.1 Explicit Form of the Orbital Model 

An orbit model only slightly more complicated than the Keplerian ellipse 

is the empirical orbit. 

secular and periodic changes with time. These variations are determined 

strictly empirically; the gravity field of the earth does not appear in the model 

and there is no integration of equations of motion involved. Empirical orbits 

This model allows the Keplerian elements to undergo 
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have been advocated principally at the Smithsonian Astrophysical Observatory 

and now form the basis of the SA0 Differential Orbit Improvement program 

[Gaposchkin,l9661. Empirical orbits are also used by the SA0 in their 

Ephemeris 6 predictions, 

and by the USCGS in their 

which are published for many different satellites, 

in-house predictions for the ECHO and PAGEOS 

satellites. 

In an empirical orbit only five, rather than six, elements are used. 

These are usually taken to be the Keplerian elements W (argument of perigee), 

52 (right ascension of ascending node), i (inclination), e (eccentricity) and M 

(mean anomaly). Each of these is defined by an equation of the form 

Ei = El0 + Eil (T - To) + Ei2 (T - To)’+ Ei3 (T - 

+ Ei4 cos a + El5 sin (3.1) 

where Ei is a general symbol for any of the set { W ,  n , i ,  e, MI,  and T and 

To are time and reference time respectively; is obtained by evaluating only 

the polynomial part of the expression for 0. Early expressions for empirical 

orbits were  more general than this, allowing polynomial terms of arbitrary 

degree, trigonometric terms of arbitrary amplitude, period, and phase, and 

even hyperbolic terms [Mueller, 1964, Q. 2141. The form above is somewhat 

more pleasing than a completely general expression, since it is the form that 

would be obtained by integrating the Lagrange planetary equations for secular 

and long period effects. 

The coefficients Eij in (3.1) are found by a least squares f i t  to the data 
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being processed. Thus the elements Ei are l*mean"elements only in the sense 

of 'best fitting to this particular set of data. l 1  

Since there are six coefficients in each of five expressions, the model 

These coefficients characterizing the allows a s  many a s  30 orbit unknowns. 

orbit are usually called the "orbit parameters" to distinguish them from the 

elements. In practice, fewer than 30 parameters are used. The set coo, W i ,  

00, a, io, eo, el, Mo, MI, MZ 1 is normally used to characterize arcs lasting 

two weeks by the SA0 and the USCGS. This set of ten parameters has been 

found to describe the orbit for several weeks with accuracy sufficient for 

prediction purposes (several minutes of arc along track and less than a minute 

of arc across track). 

This form of orbit model was used by previous investigators at The Ohio 

State University because it was thought that it would be more accurate than the 

Keplerian orbit and almost as  simple. The approach of the short arc solution 

described inkapp, 19671 is to constrain the parameters {W, 0 1 ,  el, MZ 3 at 

values published in the SA0 ephemerides, and to solve only for the six para- 

meters ~ W O  , 00, i o ,  eo, &, MI]. The mean motion is then computed from 

n = -  dM (polynomid part only) 
dT 

and the semi-major axis from the modified Third Law of Kepler [Kozai, 19601 

where 1 

GM 'j 2 3 p = (7) ( l - e  ) and J = - 
2 Jz 
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Early experiments by this investigator with data from GEOS-A and PAGEOS 

indicated that the precision of f i t  over a short arc was not perceptibly improved 

by inclusion of the secular variations CUI, , a, el, Mz 1. In most of the experi- 

ments described in the next chapter, all parameters except the set {WO,  00, 

io, e o ,  W ,  MI 3 were set to zero and these six were considered to be &owns. 

Used in this manner, the empirical orbit is exactly the same as the Keplerian 

orbit, except that the modified form of Kepler's third law is used. 

The satellite position is computed for any time T by the sequence of 

calculations diagrammed in Fig. 3.1. 

ordinates cx r n ,  6,, R, , are taken as being in the modified sidereal coordinate 

system described in [Veis, 1963, p. 121. This system is almost inertial, and 

differs from the true sidereal coordinate system of date only by the amount of 

the precession since 1950.0 and the nutation in right ascension. 

The orbit elements, and thus the co- 

3.2 Explicit Form of the Observation Equations for Range and Direction 
Observations. 

Direction observations are assumed to be given in the topocentric sidereal 

coordinate system, defined by the true equator and equinox of date. This co- 

ordinate system was selected because it is the stipulated system for direction 

observations deposited in the National Space Science Data Center by partici- 

pants in the National Geodetic Satellite Program. Range observations are, of 

course, independent of coordinate system, although some coordinate system 

must be selected for intermediate computations. 

The notations used for the various coordinate systems are: 
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- average terrestrial coordinate system. 

- instantaneous terrestrial coordinate sys- 
tem, differing from the average system 
only by polar motion. 

geocentric sidereal coordinates, related 
to u, v, w, by an R3 rotation through the 
Greenwich Apparent Sidereal Time. 

/ / /  
5 ,  7, b r x ,  Y, - 

/ / /  
XY Y, - topocentric sidereal coordinates. 

Cy, 6, R; CC: 6: R' - spherical coordinates, referred to the 
geocentric and topocentric sidereal 
coordinate systems respectively. 

am, 6m, Rm - spherical coordinates in the modified si- 
dereal (orbital) system. 

The transformations between these systems are all found in [Veis, 19631. 

The form of the linearized observation equation is 

V + 6L = A6x + B6b (3.2) 

where 6L = (&CY: 66: 6R')T is the vector of "observed minus computed" 

discrepancies in Cy: 6: Rf dx = (6u, 6v, 6w)* is the vector of corrections to the 

approximate terrestrial station coordinates; and 6b is the vector of corrections 

to the approximate orbital parameters, The vector b of orbit unknowns has 

a variable length in the program. It may consist of any subset of as  many as  

21 of the 30 orbit parameters, and may be different for each orbit, although 

for short arc applications it was almost always specified to consist of the six 

parameters b = [WO , 00, io , eo M.o MI 1. The matrices A and B are 
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If right ascension and declination observations are given, only the first two 

equations of (3.2) are  generated; if range is observed, only the last equation 

is formed. Equation (3.2) has the same form and meaning (although different 

notation) as equation (2.11) in Chapter 2. 

polynomial part of - 

I 

Fig. 3.1 Computation of satellite position 
from empirical expressions 
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a, 6 ,  R Precession 
True Sidereal - and Nuta- 

System tion since 
1950.0 

Nutation i-' 

1 

. 
u: v: w: Referred 
to Instantaneous 

Equator 
I 

Referring to True 

Fig. 3.2 Sequence of computations leading to "observed 
minus computed" discrepancies 
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The sequence of obsemations leading to the "observed ,minus computedvt 

discrepancies.is outlined in Figure 3.2. The A and B matrices are computed 

as products of matrices 

A = -Q X P; B = Q X S  X U X  0. 

The component matrices of these products are: 

Q =  , 

a (0, sl i ,  i ,  e ,  M, a) 
ab o =  

(3.3) 

I f  I a (u, v, w 1 P =  
v, w) * 

The individual components of these matrices are given in the Appendix. 

The matrix 0, and thus 33, has a variable number of columns, depending 

on the number of unknowns associated with the orbit in question. 

program allows these matrices to have up to 21  columns. 

The computGr 

The advantage of the arrangement of matrices in equation (3.3) is that 

the matrices P and the product SUO = § X U X 0 may be formed by the same 

block of coding for both direction and range measurements. The program then 

branches, forming only the first two rows of Q for direction observations and 

only the last row in the case of a range observation. The resulting partition of 
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Q is then multiplied into P and SUO. A further advantage is that P and SUO 

depend only on the time and the orbit, not on the station. The program requires 

that observations be grouped by orbit , but arrangement within orbit is arbitrary. 

However, if observations are grouped by epoch within the orbit, it is only 

necessary to compute the P and SUO matrices once for each epoch. This resdts 

in considerable savings of time in some cases, since when observations are 

taken in the simultaneous mode, two o r  more stations will observe at each 

epoch. The Q matrix depends on the particular station involved and must be 

computed anew for each observing station. 

3.3 Accumulation of Normal Equations and Elimination of Orbit Unknowns. 

As in the geometric mode adjustment, the orbital mode adjustment leads 

to a very highly patterned form of normal equations. In order to discuss this 

pattern, it is necessary to devise a system of subscripts. Let 

i be an index denoting the ith station, 

k be an index denoting the kth orbit, 

jk be an index denoting the jth time epoch within the 
kth orbit. 

Also let, 

s be the total number of stations (1 * i I, s), 

p be the total number of orbits (1s ks p), 

ek be the total number of time epochs in the kth 
orbit (1 * jk * ek). 

By attaching subscripts to equation (3.2), the observation equation for 

the observation(s) made on the kth orbit at the jkth epoch from the ith station is 

written 
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The weight matrix for this observation is Wijk, where 

-1 [var (CY!) cov (a‘, 6‘) \ 
Wijk = I cov (CY’&’) var (6 ‘) 

for a right ascension and declination pair, and Wfjk = (var (R‘))’’ for a range 

observation. 

The pattern of the observation equations is displayed in Figure 3.3. The 

pattern of the resulting normal equations is shown in Figure 3.4, where the 

notation popularized by Duane Brown is used. The partitions of the normal 

equations are given by 

In adjustments performed on computers it is almost always convenient 

to skip the formation of the full observation and normal equation matrices, 

proceeding directly to the formation of the nonzero partitions of the normal 

equations. In this case all of the nonzero partitions are indicated in (3.4). 

As each observation is processed, its contributions to the sums indicated in 
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(3.4) are computed and added in. Space is reserved in the computer for the 

maximum of 150 Ni and K,blocks, but only for one each of the Nk, Nk, and 

Kk blocks. Since all of the observations for the kth orbit are grouped together, 

this space is used to accumulate the Nk, Nk, and 

9. - 
.. 

- .. 
blocks. These blocks are 

then written on tape and the space released to process the next orbit. This 

allows the processing of an unlimited number of orbits. Each individual 

observation equation is saved on another tape to be used in the subsequent 

residual analysis. 
- 

The largest block for which space must be reserved is the Rk block, 

whose size is 450 X 21. It would be possible to conserve even more computer 

space by reserving room for only one (3 X 21) Nik subblock. However, this 

would require that the input be ordered so that all the observations from each 

station are grouped together within each orbit. This in turn would mean that 

input decks that were  ordered for processing in the geometric mode would 

have to be reordered for processing in the orbital mode. Since it was desired 

to compare geometric and orbital mode solutions for several sets of data, 

and since enough space was available in the computer, it was  decided to 

reserve space for the larger Nk block. 

There is also the consideration that many of the Eik subblocks within 

each Ek may be zero, and thus the program may have to process a large 

number of zero blocks. Each E% is nonzero only if the ith station made at 

least one observation on the kth orbit. It was felt that in most applications 

enough blocks would be nonzero so that the effort saved by not processing zero 
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Fig. 3.3 Farm of obervation equations 

59 



6x1. ......... 6x8 
0 . . .  0 
Nz ... 0 - 

. .  

I 

or 
6X 

N 

or 

1 

- - . . . . . . . . . .  NS1 NBP 

.. 
N1 0 - .. 

N2 

0 

0 

.. 
NP 

.. 
Kl 

Ka 
.. 

.. 
KP 

Fig. 3.4 Form of normal equations 



blocks would be more than mhtkhed by the extra bookkeeping effort that would 

have been made necessary. 

Once all of the block& h een for is possible to eliminate the 

orbit unknowns and form a reduced set of normal equations which involve only 

the station unlaowns. These are given by 

where 

The dimension of the reduced normal equations is equal to th% total number 0f 

station unknowns, and these equations may be formed in one pass over the tape 

containing the Nk, Nk, and lt4, blocks only if the whsle matrix of reduced nor- 
I. *- - 

mal equations will fit into the machine. Although the different blocks of normal 

equations will be formed for up to 150 stations, the program proceeds to a 

solution only if the networks being adjusted contain 30 or  fewer stations. 

After this step, the contributions to the normal equations generated by 

a priori constraints on station positions and constraints among stations may be 

added to the reduced normal equations. 

' In the geometric mode, an off-diagonal block of the reduced normal 

equations will be zero only if the two stations to which it corresponds never 

observed any satellite position together. Because of the restrictions imposed 

by the requirement for intervisibility, it is quite likely that there will be many 

zero blocks. In the orbital mode, the same rule holds, but "any satellite 
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position" is replaced by "any orbit. 

many more nonzero blocks than in the corresponding geometric mode adjust- 

ment. In fact, for networks of continental extent or  smaller, there will very 

likely be no zero blocks in the reduced normal equations, 

This means that there will be a great 

Since it is not likely to have any special properties, equation (3.5) is 

solved for 6X by direct inversion of the matrix of reduced normal equations. 

The solution for the orbit unknowns is then obtained spearately for each orbit 

from 

Finally, the tape containing the observation equations is read, the residuals 

for each equation are computed, and the customary statistical analyses are 

performed. 

3.4 Inclusion of Constraints Among Station Unknowns 

For the purpose of this discussion, let the N matrix be partitioned into 

3 X 3 subblocks Nij, where the notation N,, corresponds to N, in the previous 

section. Although the constraints among stations are most conveniently dis- 

cussed in terms of additive contributions to the N matrix, these contributions 

are more conveniently added to the reduced normal equations, both for numerical. 

reasons and because these equations give rise to ncmzero off-diagonal blocks in 

the N matrix. 

Four types of constraints are processed by the orbit constraint program 

being described. 
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(1) A priori w ion positions. Th nerate 

observation equations 

Torm 

where W, is the inverse of the covariance m 

with which the approximat priori) coord f t  sent 

that station's terrestrial (geocentric) coordinates, 

(2) Absolute constraints on station positions, or fixing of station 

positions. AA station is easily fixed by removing the three rows and columns 

corresponding to that station from the matrix of reduced normal equations. 

This must be done after all other constraints involving that station have been 
* 

processed. 

(3) Chord distance between stations. Often highly accurate baselines 

make it desirable to constrain the distance between stations. This is 

especially true of stations connected to the super-accurate baselines currently 

being established by the USCGS as part of the U. S. World Geodetic Satellite 

Program. The geodetic coordinates may be easily converted to a chord 

distance diJ between the ith and jth station. The single nonlinear equation 

generated by this observation is 
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where 

evaluated at the approximate values of the station coordinates. The contribu- 

tions to the normal equations generated by this observation are 

to Nit and Njj , T:,wlJ Ti, ; 

to NiJ and N,, , -$,J wiJ ; 

to k,, T:j tdbiJ - d?J); 

to i,, -Til wiJ (d?J - d7$); 
3. where wid = var (dtj). 

(4) Relative position between stations. If two stations are fairly close 

together, it may be desirable to preserve their relative surveyed position in 

rectangular coordinates. This requires that the two stations be connected by 

both horizontal and vertical control. The constraint is expressed by the 

three equations 

XI - x, = ax;, +VlJ . 

The contributions to the normal 



where AXyj = X, - X, evaluated at the approximate values of the coordinates, 

and Wfj is the inverse of the covariance matrix describing the accuracy of the 

relative position in rectangular coordinates. 

3.5 The Need for Approximate Orbital Elements 

One very troublesome aspect of the orbital mode adjustment is the need 

for approximate orbital elements. Not only must these elements be fairly 

good approximations if the solution is to converge at all, but they should be quite 

accurate approximations if it is to converge in a reasonable number of 

iterations. 

It is not at all obvious to the user of a short arc orbital constraint pro- 

gram how the approximate orbit elements are to be obtained. There do not 

appear to be any simple graphical o r  desk calculator methods which will yield 

an accurate set of Keplerian elements from a set of direction o r  range observa- 

tions, so that it appears to be necessary to go to the computer just to generate 

a set of approximate elements. 

This problem was first encountered when the orbital constraint program 

described in this chapter was used to adjust the BC-4 data described in 

Chapter 4. A first attempt at obtaining approximate orbital elements entailed 

the use of the computer program described in [Wintz, 19611, 

which is available in the library of the Department of Geodetic 

a set of Keplerian elements using three direction observations 

This program, 

Science, computes 

from a single 

station by the Gauss method. 

perform this task on a desk calculator is about five man-days - a completely 

(Wintz estimates that the effort required to 
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unreasonable effort in view of the present accessibility of computers [Wintz, 

1961, p. 161.) It quickly became apparent that this sypproach would not 

suffice for the short arcs described by the balloon satellites as they passed 

through the 33' field of view of the BC-4 camera. Such disconcerting results 

as negative eccentricities, negative mean motions, and semi-major axes 

much smaller than an earth radius, were obtained. Moreover, when the 

same orbit was  determined separately by the observations from two differ- 

ent stations, the two sets of elements obtained bore no resemblance to each 

other. The cause of the difficulty was assumed to be that the three to five 

minute time span of the arcs did not afford a sufficient geometrical separation 

of the observations. This experience was a preview of many more difficulties 

to be encountered in the determination of orbits from the BC-4 data. 

Since not even an approximate orbit could be extracted from the data, 

the orbit elements that had been used by the Coast and Geodetic Survey for 

their predictions were obtained. A differential correction orbit determination 

program was written. This was actually a simplified version of the orbital 

mode adjustment program, with the station unknowns removed. The USCGS 

elements were used as a first approximation, and a second approximation was 

obtained from the data by differential orbit correction. These second ap- 

proximations were used as input to the orbital constraint adjustment, and 

were usually sufficiently accurate that a satisfactory adjustment was obtained 

in one o r  two iterations. 

The differential orbit correction process usually required four o r  five, 
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and sometimes as many as ten, iterations to compute corrections of two o r  

three degrees of arc to the angular elements. If the first approximations were 

not good to within a few degrees of arc,  the differential orbit correction pro- 

gram would often compute a hyperbolic orbit at some iteration. At this poht 

Kepler's equation, which is valid in its usual form only for elliptic orbits, 

would fail to converge and the whole process would break down. This indicated 

both that the orbit was  not well determined and that the observations were 

highly nonlinear functions of the Keplerian elements. In later experiments 

with the orbital mode adjustment program, it was  noticed that this program 

could easily pick up corrections of one mile to station positions in a single 

iteration, but that corrections of one minute of a rc  to the angular orbit elements 

necessitated several iterations. 

Because of the difficulty of obtaining approximate orbit elements, 

consideration w a s  given to the possibility of redesigning the adjustment so that 

the approximate values of the orbit elements would not appear. In the geo- 

metric mode adjustment, it is possible to design the problem so that the 

approximate satellite positions do not appear at all. All geometric mode 

adjustments that utilize the concept of intersecting planes, such as that des- 

cribed by [Aardoom, Girnius, and Veis, 19661, have this property. 

Mrakiwsky demonstrates a geometric adjustment where the approximate satel- 

lite positions algebraically cancel out and disappear in the formation of the 

normal equations [Krakiwsky and Pope, 1967, p. 421. It appears that the 

approximate values of nuisance parameters can always be algebraically 
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eliminated from the normal equations of an adjustment if the mathematicdl 

model may be written linearly in those parameters. There does not appear 

to be any natural and reasonably simple way of doing this for the orbital mode 

adjustment. Although it may be possible to wri te  a model for the short arc 

orbit constraint adjustment that is linear in the Keplerian elements (and non- 

linear in the observations), such a model would have to embody some orbit 

determination process, such as the Gauss method, and this would introduce 

intolerable complications. 
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4. The Use  of Orbital Constraints in the Case of Satellite 
Trails on BC-4 Photographic Plates 

The purpose of the experiments described in this chapter was to 

determine the feasibility of adjusting satellite directions determined from 

BC-4 photographic plates in the short arc orbital mode, and to compare 

the solution obtained in the orbital mode with the corresponding geometric 

mode solution, These experiments were part of a continuing series of 

investigations conducted at OSU into the various methods of utilizing passive 

satellite observational data, especially the data deposited in the National 

Space Science Data Center. Results of previous investigations are reported 

in [Hotter, 1967; Hornbarger, 1968; and Veach, 19681. 

4.1 The Chopped Satellite Trail 

The BC-4 is the only camera in widespread use designed specifically 

for photographing passive satellites. It consists of a modified Wild RC-5 

aerial camera mounted on a T-4 theodolite base. Originally a 300 mm Astrotar 

lens was  used, but this is now being replaced by a 450mm Cosmotar lens 

especially designed for satellite photography. The field of view is approxi- 

mately 33' x 33O for the 300 mm lens and 20° x 20' for the 450 mm lens. 

The BC-4 has no sidereal or great circle drives, but is always operated 

in a stationary mode. Star images are exposed before and after the pass of 

the satellite with a capping shutter in front of the lens. As the satellite passes 

through the field of view, the capping shutter is held open and the satellite 
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trail is chopped by system of rotating disk shutters. The exposure time and 

chopping interval are selected according to the expected speed of the satellite 

through the field of view, and the f-stop selected is based on the expected 

magnitude of the satellite. An exposure time of 1/60 sec and a chopping interval 

of 1/5 sec are typical of plates of ECHO II. This yields a trail of 400-600, 

sometimes more, satellite images across the plate. For the PAGEOS satel- 

lite, the exposure time is generally 1/30 or 1/15 sec, and the chopping interval 

is generally 4/5 sec. This yields a trail of about 200-400 images across the 

plate, "he capping shutter is programmed to code the trail by omitting cer- 

tain images. This facilitates identification of the images by time of exposure. 

A great deal of effort is put into the timing of the images, with the result 

that the accuracy of the time associated with each satellite image is no worse 

than 150 microseconds [Taylor, 19631, 

The BC-4 camera is providing the data for the establishment of the 

U. S. World Geometric Satellite Net. This program is directed by the U. S. 

Coast and Geodetic Survey of the Environmental Science Service Administration, 

which schedules observations and reduces and analyzes the data. Observa- 

tions are scheduled only in the simultaneous mode. Successful simultaneous 

photography by two or more stations is termed an event. Since the passage 

of the satellite through the field of view takes two to five minutes, "simultaneous" 

in this context means that the time spans of the two plates overlap. In practice, 

observations are scheduled and the cameras are aimed so that the overlap is 

large and the satellite passes near the center of each plate at nearly the same 
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time. The opening of the shutter is controlled by the station clocks. Since 

each clock defines its own time system, and because of the finite time re- 

quired for the light from the satellite to reach the stations, the images are 

not exactly simultaneous. The star images are measured by the USCGS and 

are used to perform a sophisticated stellar camera calibration, which is 

summarized in [Hotter, 19671. The accuracy of the computed direction of 

the optical axis is thought to be about 0!'5. 

Each satellite image is also measured. For the data submitted to 

the National Space Science Data Center, each satellite image is converted to 

a right ascension and declination by use of the plate constants. The satellite 

images are treated as unknown stars in this conversion. 

sions and declinations of the satellite images include atmospheric refraction 

and stellar aberration, so that the coordinates deposited in the NSSDC are 

"apparent" in the sense of the apparent place of a star. The time associated 

with each image is the UT1 of the instant the image was received (mid-opening 

of the shutter) modified by the addition of 44ms to refer to the old adopted 

longitude of the U. S. Naval Observatory. In order to obtain the geometrical 

direction of the center of the satellite, it is necessary to correct the listed 

coordinates for phase angle , parallactic refraction, and parallactic aberration 

(light-time correction) [Veach, 1968, p. 911. 

The right ascen- 

4.2 Satellite Images and Curve Fitting 

The sheer abundance of data available from even a single BC-4 plate 

creates several interesting problems, since each user must decide how best 
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to use such a huge amount of data, The method employed by the USCGS in- 

volves the fitting of polynomials to the ssltellite trail, but not all investigators 

agree that this is the best approach. In particular, it may be possible to use 

only a selected set  of images and obtain the same information by processing 

the data in the orbital mode. 

4.21 The Use  of Every Single Image. The most obvious approach 

is to treat each image as a separate observation. However, there are several 

good reasons why this is unsatisfactory. The main problem is that there is 

just too much data to be processed for the amount of geometrical information 

that may be obtained. Although they may provide statistical information, 

adjacent images are  so close together in direction that they provide essentially 

the same geometrical information. Thus it would appear that the same 

amount of geometrical information could be obtained from only a selected set 

of images. Although using the several hundred images on each plate will not 

necessarily harm an adjustment, it is usually not advisable to generate super- 

fluous observation equations, since the processing of a greater number of 

equations on the computer will usually result in a greater accummulation of 

round-off error. Furthermore, the generation of several hundred observation 

equations that give little useful information would be a needless waste of 

computer time. A second consideration is that certain components of error,  

smh as emulsion creep or  anomalous refraction, may be nearly the same in 

adjacent images. This could mean that the errors  in adjacent images are sig- 

nificantly correlated, and that an adjustment that fails to take account of this 

72 



time-wise (or serial) correlation may be biased. A third consideration is that 

the images on the two or more plates that constitute an event are not simul- 

taneous. Therefore some sort of curve fitting procedure, if only as an imter- 

polation tool, will have te be employed anyway. 

4.22 The Use of a Few Selected Images. If snly a few, such as 10 or 

20 images, are selected from the plate, and if these are spaced fairly well 

apart, then the correlation between adjacent images arising from such effects 

as emulsion creep and image motion may be neglected. However, i f  a single 

plate reduction is done for the whole plate, the directions computed for dif- 

ferent images will still be correlated. The plate constants are determined 

from measurements of the star images, and thus have statistical uncer- 

tainties, Since the computed right ascensions and declinations of the different 

satellite images all involve the same set of plate constants, these will all be 

correlated; i. e., although the plate coordinates (x, y) of the different images 

are not correlated, the right ascensions and declinations are. 

ation also applies to photographs of sequences of flashing lights, such as  the 

ANNA or  GEOS optical beacons. Since this consideration applies to other 

photographic systems,such as the MOTS and PC-1000, it will be examined in 

some detail. 

This consider- 

Let the error  in the right ascension of a single image be written 

where 6al, is the component of the error  arising from accidental measurement 
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error on the comparator, 6a1, is the error from shimmer, image motion, 

and emulsion creep, and 6alP is the error arising from any errors in the 

plate constants; i. e., 

etc. There are, of course, several other small sources of error,  but 

consideration of them is not necessary for this analysis. Since the dominating 

source of error in the plate constants is the errors in the catalogued positions 

of the stars, it may reasonably be assumed that these components of error 

are independent. Then the variance of this right ascension may be written 

Similarly, the variance of the right ascension of another image from the same 

plate is 

The covariance between a1 and 0 1 ~  is then given by 

This expression will contain the expectancies of six cross products. The 

measurement errors may reasonably be assumed to be independent, and, if 

the images are sufficiently well spaced, the errors arising from shimmer and 

image motion may also be assumed to be independent. However, the errors 

in the two images arising from the plate constants will be very nearly th.e 

same, and will  both be very nearly the error  in the right ascension of the 
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duct which does 

blem, since it leads only to a weight matrix with 2 x 2 blocks on the main 

diagonal. However, covariance between different images produces blocks 

whose dimension is twice the number of images taken from each plate. For 

example, let n be the number of images used from a plate and let the obser- 

vation equations be arranged in the order {a1, 61,a2 . . . &,I. For simplicity, 

assume that right ascensions and declinations have the same variance u2and 

that right ascensions are uncorrelated with declinations. Also let 

be the correlation between any pair of right ascensions or  declinations. 

the covariance matrix for the observations on a single plate is 

Then 

U2 

61 a2 

0 r 

1 0 

1 

- 
- 

0 . . .  r 0 

r . . .  0 r 

0 . . .  r 0 

- 1 0  

1 

(4.2) 
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The total weight matrix for the adjustment of all observations on all 

plates is made up of blocks such as this along the main diagonal. Since this 

matrix is highly patterned, its inverse may be formed analytically with little 

trouble. However, most computer programs for the adjustment of satellite 

directions are not set up to deal with correlations of this type, since a rigorous 

treatment of these correlations would necessitate storing the observation 

equations arising from all the images on a plate in the machine at the same time, 

and this would result in a somewhat cumbersome program. The orbital con- 

straint program described in the previous chapter will take account only of 

correlation between the right ascension and declination of a single image, 

and this is also true of the geometric mode program used for the comparisons 

described in section 4.3. Therefore, it is reasonable to consider what will 

happen if these correlations between different images are neglected and a 

diagonal weight matrix is used. 

First, the solution will still be unbiased even if the wrong weight matrix 

is used [Hamilton, 1964, p. 1461. However, the solution will not have the 

property of minimum variance, since this requires that the weight matrix be 

inversely proportional to the covariance matrix of the observations. Let the 

weight coefficient matrix of the solution obtained using a diagonal weighting 

matrix be denoted Qo , and let that of the minimum variaace solution be 

denoted QMV. Then 

Q..iv Q, 

since Qvv is minimum by definition. However, it is also possible to find 
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an upper'bound,for QD in terms of QMv [Magnus and McGuire, 1962, p. 469 J. 

This is given by 

where A,,, and Am in are the maximum and minimum eigenvalues of the true 

cerrelation matrix of the observations. The correlation matrix in (4.2) is 

highly patterned, and its eigenvalues turn out to be a function only of the cor- 

relation coefficient r and the number n of images used from the plate. The 

qplicable values are 

A,,, = 1 + (n-1)r , 

X m i n  = 1 - r .  

1 1 1 
The factor 4 (A,,, + X m i n ) ( ~ m a x  + - ) is tabulated in Table 4.1 for r = 0.06 

X m i n  

and r = 0.1. These correlation coefficients were used because they represent 

the correlation between individual images on BC-4 plates for the 300 mm and 

450 mm lenses, respectively. The interpretation of this table is that the 

solution obtained by neglecting correlations between different images is no 

worse than this factor times the covariance matrix of the minimum variance 

solution. Thus it is possible to make a quantitive judgment as to whether 

o r  not the worsening of the solution caused by neglect of these correlations 

is tolerable. 

77 



Table 4.1 
Worsening Factors for the Effect of the Neglect of Correlations 

Between Observations 

Number of Images 
pe.r Plate 

1 

2 

3 

4 

5 

10 

15 

20 

25 

Worsening Factor 

1 r = 0.1 r = 0.06 

1.0 

1.0036 

1.007 

1.013 

1.019 

1.062 

1.117 

1.179 

1.245 

1.0 

1.010 

1.021 

1.034 

1.049 

1.146 

1.260 

1.383 

1.511 

4.23 Curve Fitting and the Orbital Constraint. In the method used 

by ESSA to process the EC-4 plates, there is no problem of correlation be- 

tween images, since only one image is considered and one pair of observation 

equations per plate is generated. This method entails the use of two poly- 

nomials to describe the trail of the satellite across the plate, and a single 

"fictitious image" is computed from these polynomials. Since the polynomial 

curve fitting smoothes out measurement error, shimmer, and othcr errors, 

this fictitious image is of higher quality than any of the single images. The 

two polynomials describe the plate coordinates x and y as functions of time, 

where the x and y axes lie in the photographic plate and are oriented in the 

direction of, and perpendicular to, the approximate direction of the satellite 
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trail. (The ESSA computations never involve the right ascension and declina- 

tion of each image. ) The satellite trail on the plate appears to be a straight 

line to the unaided eye; however, careful analysis shows that higher degree 

polynomials f i t  significantly better [Veach, 1968, p. 731. Normally fifth 

degree polynomials are used, but seventh degree polynomials have also been 

used, especially for the ECHO plates which generally have a greater number 

of images than PAGEOS plates. The coefficients of the polynomials are 

determined by least-squares curve fitting to the corrected x and y plate 

coordinates. The fictitious image is computed by selecting an epoch, usually 

specified as the UT1 of the time the light left the satellite, correcting this 

epoch for light travel time, transforming it into the time system in which 

the curve fitting was done (e. g. , the station clock system) , and evaluating 

the x and y polynomials for that epoch. The light-time correction and the 

transformation between time systems is discussed in detail and an example 

of the computations is given in [Veach, 1963, p. 1003. 

The USCGS procedure of using two polynomials has the effect of 

collapsing all of the images into a single image, and thus may be viewed 

as an information compression technique. Thus an important question is 

whether any significant information is lost in the compression process. A 

companion question is whether the information contained in the single 

fictitious image could be obtained by using some subset of the images on the 

plate. Another question, discussed by [Veach, 19683 and by [Hornbarger, 

19683, is whether the same information could be obtained by dividing the plate 
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into small areas and doing an astrometric plate reduction (which is much 

cheaper than the photogrammetric reduction), fitting polynomials, and ob- 

taining a fictitious image for each area. 

The technique of fitting a curve to the satellite trail has a certain in- 

tuitive justification; since the path of the satellite in space is a smooth curve, 

its trail on the photographic plate should be constrained to be a smooth curve 

also. The problem is that the curve f i t  uses too many parameters to describe 

the constraint. If fifth degree polynomials are used, a total of twelve para- 

meters are used to describe the trail on each plate. I€ two plates are in- 

volved in the event, a total of 24 independent parameters are used to describe 

the motion of the satellite, and if three plates are involved, 36 independent 

parameters are estimated. However, the path of the satellite should be 

equally well described by the six parameters of a Keplerian or other simple 

orbit model for the two to five minutes spanned by the plate. It follows that 

the excess over six of curve fitting parameters are superfluous, and the 

problem is said to be I'overparameterized. I t  

The danger of overparameterization is that the observations may fit 

the constraint too well. Brown claims that there are several possible sources 

of error that are periodic across the plate with periods of the order of one or  

a few minutes [Brown, 1967, p. 913. The curve f i t  will conform to these low 

frequency components of error ,  rather than constrain the images to the true 

projection of the satellite path onto the plate. Brown concludes that a low 

frequency error whose amplitude is one micron could easily be accommodated 
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by the curve f i t ,  and that this error  could occur in and dominate the fictitious 

image. It appears then that the images on the satellite trail should be con- 

strained, but the constraint should be expressed by short arc methods rather 

than by polynomial curve fitting. 

4.3 Experiments Performed with BC-4 Plates 

In order to answer some of the questions raised in the previous section, 

a selectisn of BC-4 data obtained from the NSSDC was processed with the short 

arc orbital Constraint program, described in the previous chapter. In order 

to afford a comparison with the geometrical approach, much of the same data 

was also processed by the geometric mode adjustment program described 

by [Krakiwsky and Pope, 19673. 

4.31 Description of the Experiments. The data was  obtained from 

a tape furnished to the NSSDC by ESSA in the spring of 1968. A copy of this 

tape was obtained from the NSSDC by OSU. This tape contains right ascensions 

and declinations for each image on 298 plates, all of which are being used by 

ESSA in the establishment of the World Geometric Satellite Net. Almost all 

of these plates are photographs of the PAGEOS satellite. With an average 

of 250-400 images per plate, the tape contains in the neighborhood of 100,000 

images. A set of 12 plates, taken from three stations, was extracted from 

this tape. 

stations. 

The data set was later expanded to include 45 plates and four 

The stations involved were the following: 
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1 Thule, Greenland 

38 Revilla Gigedo, Mexico 

The first set of data, involving stations 2, 3,  and 38, consisted of the fol- 

lowing: 

Event - Date Plates - Stations 

2497 Aug 19, 1966 A404 , E328 3, 2 
3539 Dec 17, 1966 A491, E393 3,  2 
42 12 Mar 5, 1967 A567, U411 3,38 
4236 Mar 8 ,  1967 A571, E422,U416 3,  2 ,38 
4267 Mar 12, 1967 A574, E450, U423 3,  2 ,38 

The station, event, and plate numbers are those assigned by the USCGS. 

The BC-4 cameras apparently never attempt to take more than one 

plate on a given pass of the satellite (as do the MOTS and PC-1000 cameras 

when photographing flashes from the flashing light satellites). In fact, ob- 

servations are  only rarely scheduled for two successive passes of the 

satellite. Thus it is necessary to define an "orbit, in relation to BC-4 

photography, to be the trail of the satellite imaged on the two or  more plates 

of an event, and "orbit!? and "event" are used interchangeably. 

The preprocessing of the 12 plates began with the determination of a 

of the five events. difficulties encountered at 

section 3.5. The preliminary (second approxima- 

tion) orbits computed by 

pute ange to the satellite for the ti 

82 



were  used to correct all images on each of the plates for parallactic re- 

fraction, phase angle, and parallactic aberration, according to the formulae 

described in [Veach, 1968, p. 911. A standard temperature and atmospheric 

pressure were used for the parallactic refraction correction. 

Approximately 20 epochs falling within the time span of each event 

were selected; i. e., these 20 epochs were approximately equally spaced 

between the time the latest starting trail started and the time the earliest 

ending trail ended. A quasi-simultaneous image was constructed fer each of 

these epochs by second order interpolation. These images were  desigrated 

"individual images. The epochs were  always selected so that they would 

fa l l  close to the time of an actual image on the plate. Since some images 

were missing (due to coding of the trail, partial cloud cover, o r  other 

reasons), it was not always possible to ensure that these images were equally 

spaced in time. The interval between individual images varied somewhat, due 

to the varying interval of simultaneous tracking for the events. 

interval between individual images was about 15 sec. These 20 individual 

images per plate w e r e  adjusted in both the geometric and orbital modes. 

In addition, subsets of the data consisting of 10 individual images per plate 

and three individual images per plate were adjusted in the geometric mode. 

Several investigations were conducted by Veach to determine the 

The average 

possibility of fitting the right ascensions and declinations from the NSSDC tape 

to time polynomials. Using the analysis of variance techniques described in 

[ Veach, 1968, p. 731, he concluded that the satellite trail could also be 
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described by fifth degree polynomials for the right ascension and declination. 

Apair of polynomials was fit to the satellite trail for all plates and a single 

fictitious image was formed for each plate. These fictitious images were 

then adjusted in the geometric mode. (Since all the data in the event (pass) 

was collapsed to a single epoch, there could be no corresponding orbital 

mode adjustment. ) 

Another experiment utilized three fictitious images per plate. The 

satellite trail was divided into three segments and an independent pair of 

polynomials was f i t  to each segment. Third degree polynomials were found 

by Veach to be adequate for these shorter trails. A fictitious image was 

taken from each segment, and these were adjusted in the geometric mode. 

A corresponding orbital mode adjustment was not made, since this would 

have had the effect of imposing a constraint on the satellite trail twice. 

In all experiments, in both the geometric and orbital modes, the 

coordinates of Beltsville on the North American Datum were held fixed and 

the NAD distance from Beltsville to Moses Lake was constrained. Plate 

U416 of event 4236 gave difficulties in both the geometric and orbital modes, 

and was deleted from all experiments reported here. 

The results of the 12 plate series of experiments are shown in Table 

4.2. The experiments with the geometric mode were 

(1) 3 individual images per plate, 

(2) 3 0 individual impges per plate , 

(3) 20 individual images per plate, 
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(4) 3 fictitious im 
trail into three segments and fitting third degree poly- 
nomials, 

per plate , obtained by breaking each ' 

(5) 1 fictitious imag er plate, using a fifth degree poly- 
nomial curve f i t  for the entire trail, analogous to the 
procedure of the USCGS. 

The experiments using the short arc program were: 

(6) every 20th image, takeE directly from the NSSDC tape 
and uncorrected for parallactic refraction, phase angle, 
o r  light-time, 

(a) 20 images per plate. 

The results of the first three experiments were about as expected, 

except that the differences between the three estimates of the standard 

deviation of an individual image are too high. The fifth experiment, using 

one fictitious image per plate, gave unbelievably low uncertainties, This 

can only be explained by the fact that this adjustment had only two degrees 

of freedom. 

Exactly the sarne set of data was used for experiment 3 in the geo- 

metric mode and experiment 7 in the orbital mode. 

two experiments show more similarity than any other pair of experiments. 

Sioce the two adjustments used the same set of data, they must be compared 

on the basis of a single standard deviation of a single direction, regardless 

The results from these 

of the estimated unit variances from the respective adjustments. On this 

basis, the similarity between these two adjustments becomes even more strik- 

ing. Neither adjustment is clearly stronger than the other. The strengthening 

of the solution, which was expected because of the analysis presented in 
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section 2.6, does not appear in these results. The estimated standard devia- 

tion obtained from the orbital mode adjustment indicates that modeling error 

is suppressed well below the level of observational error  and that the observa- 

tions f i t  the orbit constraint about as well as was expected. The similarity 

between the two solutions indicates that the geometric solution is not great- 

ly changed by the imposition of the orbital constraint. This is especially 

interesting when compared to the large change in the solution between 20 

individual images and 10 individual images per plate. 

In order to confirm the results of the 12 plate experiments, a larger 

set of data, consisting of 45 plates taken from four stations, was selected. 

These plates were 

Event 

2492 
3173 
3185 
3539 
3538 
3560 
3561 
3795 
3837 
3935 
4061 
4182 
4196 
42 12 
4236 
4244 
4251 
42 59 
42 67 
4276 
4292 

Date 

Aug 18,1966 
Nov 18,1966 
Nov 19,1966 
Dec 17,1966 
Dec 17,1966 
Dec 19,1966 
Dec 19,1966 
Jan 14,1967 
Jan 20,1967 
Jan 31,1967 
Feb 14,1967 
Ma.r 1,1967 
Mar 3,1967 
Mar 5,1967 
Mar 8,1967 
Mar 9,1967 
Mar 10,1967 
Mar 11,1967 
Mar 12,1967 
Mar 13,1967 
Mar 15,1967 

- Plates 

B328 , A404 
B686, A478 
B688, A479 
E393 , A491 
B748 , E392 
B753, E394 
B754, E395 
B799 , A513 
B825, A521 
B835, E416 
B870, A544 
E436, A557, U406 
A562, U408 
A567, U411 
E422, A57 1 
E444, U417 
B990, E446,U419 
E448 y u42 1 
E450, A574, U423 
A576, U425 
B893 , U427 

Stations 

2 ,  3 
1,  3 
1, 3 
2, 3 
1,  2 
1, 2 
1, 2 
1, 3 
1,  3 
1, 2 
1, 3 
2, 3,38 
3,38 
3,38 
2, 3 
2,38 
1, 2,38 
2,38 
2 ,  3,38 
3,38 
1,38 
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Since the orbit constraint is written in terms of geocentric coordinates, 

it was felt that the adjustments should be performed in a coordinate system 

that is more nearly geocentric than that defined by the North American Datum. 

The SA0 C-5 Datum was selected for this purpose, and the C-5 coordinates 

of Eeltsville were held fixed i? all experirents in the 45 plate series. Thus 

the adjusted station coordicates from these adjustments c-ay be said to be 

in the C-5 system. The datum shifts used for the tsansformaticn frmn NAIJ 

to the C-5 Datum were 

A x =  21m, 

by = -143m, 

AZ = -173m. 

The spatial chord distance between Beltsville and Moses Lake, as determined 

from their NAD coordinates, was again constrained. 

The same preprocessing procedure was used for the 45 plate set as 

had been used for the 12 plate set. The same set of adjustments was per- 

formed, with the exceptions of the three individual and three fictitious images 

per plate. The results of these experiments are tabulated in Table 4.3. 

Al l  of the experiments in the 45 plate series yielded acceptable 

estimates of the unit variance, so that most of the results are directly 

comparable. Many of the observations made about the 12 plate exyeriments 

are corroborated by the results of the larger set. The corresponding geo- 

metric acd orbital mode adjustments no longer show such striking simi- 

larities since the data used was  not exactly the same, the main difference 

being that observations from the ends of the longer trails w e r e  used in the 
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orbital mode adjustment. The single fictitious image appears to contain about 

as much information as 10 individual images. The 20 individual image ad- 

justments in both modes appear to be stronger than either the adjustments 

of 10 individual images or  the one fictitious image, and the improvement is 

about a factor of J2. This indicates that information is indeed lost in the 

curve fitting procedure: more information is available on the plate than is 

carried by the single fictitious image. It also appears that if only ten images, 

rather than several hundred, were measured the same amount of information 

could be obtained from the plate. If 20 images are measured, even more 

information may be obtained. 

Although 20 individual images may contain more information than the 

single fictitious image o r  the 10 individual images, the" worsening" of the 

solution caused by neglecting the correlation between images on the same plate 

is greater when 20 individual images are used (see Table 4.1). This may 

indicate that this information cannot be properly utilized unless one is willing 

to consider correlation between images in the adjustment procedure. On 

the other hand the problem of correlation between images is not so serious if 

the plate is reduced astrometrically. Veach discusses the practicability of 

making a separate astrometric determination of the plate constants for each 

image, using only stars in the vicinity of that image. If this approach is used, 

correlation will be present orJy to the extent that there is ovorlw between 

the seta of stars used to deteraine the astrornetric plate constants for dif- 

ferent images [Veach, 1968, p. 251. 
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The adjustments with the 20 uncorrected images, taken directly from 

the NSSDC tape, were performed for both the 12 plate and the 45 plate data 

sets in order to determine the significance of the dorrections for parallactic 

refraction, phase angle, and parallactic aberration. Surprisingly, smaller 

residuals were obtained than with most of the adjustments involving corrected 

images. In view of the spreads of the adjusted coordinates provided by the 

other adjustments, the solutions provided by the uncorrected observations 

appear to be quite reasonable in most coordinates. This is only an indication 

that the effect of the systematic error in the observations is less than the 

effect of sample variation, and is certainly no justification for allowing known 

systematic errors  to remain in the observations. 

It appears clear from the a posteriori standard deviations of the 

adjustments that the quality of a single image from a BC-4 plate is about 17!7. 

A careful analysis of the residuals from the orbital mode adjustments indicated 

that two statistical populations were present: the standard deviation of a 

single image from a plate taken with a 300mm lens is about 2'!0, and that 

for a 450mm lens is about 1'14. These results agree well with technological 

analyses of the error components [Taylor, 1963, p. 8; Veach, 1968, p. 191. 

The standard deviation of a fictitious image taken from a fifth degree curve 

f i t  to the entire satellite trail appears to be about 0'!7, which agrees well with 

the results obtained by ESSA [Schmid, 1968, p. 61. The difference in the 

quality of the images formed by the two lenses indicates that the dominant 

contribution to the standard deviation of a single image is the plate measure- 

92 



ment error. If the contribution from the uncertainty of the direction of the 

optical axis is about 0'!5, then the correlation between different individual 

images from the same trail, according to equation {4.1), is only about 0.06 

for the 300mm lens. According to Table 4.1, neglecting this small amount 

of correlation and treating the individual images as indeFendent observations 

will cause worsening of the solution by factors of 1.062 for 10 images per plate, 

and 1.179 for 20 images per plate, which are certainly tolerable. 

4.32 Behavior of Short Arc  Orbit Constraint Adjustment. Through- 

out all of the experiments with the short arc adjustment program, it was 

noticed that the solution produced by this program was somewhat unstable. 

When iteration of a solution was  required, quite large changes in the elements 

of the solution vector would produce only very small improvement in the 

quadratic form of the residuals. Furthermore, the deletion of a small 

amount of data sometimes resulted in large changes in the solution vector. 

These symptoms indicated that the problem was ill-conditioned. There is 

ample physical reason to suspect that the short arc orbital mode adjustment 

is an ill-conditioned problem. Since the orbital mode adjustment process 

is also an orbit determination process, orbits are determined from observa- 

tions on only a short portion of the path. For the Keplerian orbit model, 

this means that the size, s h q e ,  position, and orientation of an ellipse must 

be determined from observations of a short portion of the ellipse. This is 

a difficult task to perform accurately even by graphical methods:, in a least 

squares adjustment, this physical {or geometrical) ill-conditioning is reflected 
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as a nume 

anomaly. 

Since the ill-condi is a ith the 

orbit parameters rather than the station 

ill-conditioning would be found in the partitions of the normal equations per- 

taining to the orbit parameters. These are the Nk matrices, which must be 

that the 

inverted when the reduced normals are formed according to the expression 

N - R k  N;R. Since difficulties were also encountered in the differential 

orbit correction process, in which the normal equations consist solely of the 

.. 
k 

.. 
Nk matrices, it. was suspected that the inversion of these matrices was the 

cause of numerical difficulties. 

Since it appeared that there was a practical lower limit as well as an 

upper limit to what constitutes a short arc, the condition of these matrices 

for the five events (orbits) of the 12 plate set was investigated. The My N and 

P condition numbers described in [Fadeev and Fadeeva, 1963, p. 1201 were 
.. 

and several different combinations of 



where 

1 
N(A) = [ Tr  (ATA)] z; 

n is the dimension of the arbitrary matrix A and the A ,  are its eigenvalues. 

The P - arumber is probably the best guide to the condition of a matrix, since 

it generally lies between the other two. Although ill-conditioning is cot 

qumtitively defined, Fadeev and Fadeeva give the impression that matrices 

with condition numbers over 20,000 may be troublesome. 

L.2 addition, the RMS error  in inversion was computed. This quantity 

was defined as the RMS of the elements of the matrix 

when this matrix is computed its elements consist solely of round-off error,  so 

that their RMS depends on the particular algorithm used for inversion and the 

precision carried, as well as the condition of the matrix. 

quantity gives an indication of the numerical error to be expected when an ill- 

I. Obviously 

For this reason, this 

conditioned matrix is inverted by a particular algorithm on a particular machize. 

In these investigations, the single precision floating print arithmetic of the 

IBM 7G94 was used, which carries a 27 binary bit mantissa (about seven to 

eight decimal digits). 

of the OSUSYS processor was used. This subroutine is a standard Gauss- 

Jordan elimination process, and is substantially the same as the library sub- 

routine of the IBJOB processor. This combination matched the inversion pro- 

cess embodied in the orbital constraint adjustment program. 

For the inversion the library matrix inversion package 

Normal equations were formed for the six sets of data described below: 
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Observations were taken only from the interval of time 
overlap of the plates of the event, i. e. onl 
interval for which quasi-simulatneous ind 
could be formed. 

Individual images were added fr 
trail in the event. 

Artificial observations were constructed to 
longer trail to 10 minutes. 

Both trails were artificially extended to 10 minutes. 

One trail was extended to 18 minutes. 

Both trails were extended to 18 minutes. 

the 

.* 
The dimension of the Nk matrices was six. The matrix of reduced 

normal equations, whose dimension was  nine, was  also analyzed to see 

what effect the ill-conditioning would have on this matrix. The Nk matrices 

are identified by event numbers in Table 4.4, and the six sets of data are identi- 

fied by the letters a-f. 

.. 

The condition numbers in Table 4.4 show that the Nk matrices are 

very poorly conditioned indeed. With a few exceptions, the condition of these 

matrices improves as the length of the trails is extended. However, the 

improvement is not very much, and is certainly not enough to eliminate the 

numerical problems. The RMS error  in inversion varies in about the same 

manner as the condition numbers (again with few exceptions). 

The problem presented by ill-conditioned matrices is not that they 

t they are especially 

ing the inversion 
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Matrix 

2497 a 
b 

d 
e 
f 

C 

3539 a,b 
C 

d 
e 
f 

4212 a 
b 

d 
e 
f 

4236 a 
b 

d 
e 
f 

4267 a 
b 

d 
e 
f 

C 

C 

C 

Table 4.4 
Condition Numbers of Nk 

Minutes of data 
(1 min = 20) 

Longesl 
trail 

4.3 
5.1 

10.0 
10.0 
18.0 
18.0 

2.8 
10.0 
10.0 
18.0 
18.0 

2-9 
5.4 

10.0 
10.0 
18.0 
18.0 

3.4 . 

5.0 
10.0 
10.0 
18.0 
18.0 

2.5 
5.0 

10.0 
10.0 
18.0 
18.0 

Shortest 
trail 

4.3 
4.3 
4.3 

10.0 
10.0 
18.0 

2.8 
2.8 

10.0 
10.0 
18.0 

2.9 
2.9 
2.9 

10.0 
10.0 
18.0 

3.4 
3.4 
3.4 

10.0 
10.0 
18.0 

2.5 
2.5 
2.5 

10.0 
10.0 
18.0 

Condition numbers 
units = 18 

M 

108 
70 

10 7 
63 
44 
48 

45 1 
226 

53 
19822 

13 9 

727 
324 
13 1 
86 
77 
63 

1448 
1120 
50 a? 
18 5 
12 3 
80 

9 13 
50 1 
18 5 
83 
60 
47 
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N 

10 
6.8 

10 
6.7 
5 
6 

44 
24 

5 
1896 

13 

32 
14 
6 
4 
3.5 
2.9 

62 
48 
2 1  
8 
5 
3.6 

39 
22 
9 
3.8 
2.7 
2.1 

P 

64 
37 
63 
35 
32 
33 

132 
133 
29 

2 64 
53 

176 
75 
35 
23 
20 
1'7 

351 
263 
117 
46 
3 1  
2 1  

46 
118 
50 
22 
16 
12 

RMS error in 
inversion 

0.0578 
0.0330 
0.0463 
0.0181 
0.0195 
0.0127 

0.356 
0.0880 
0.0233 
8.958 
0.0467 

0.0324 
0.0261 
0.00538 
0.0 0643 
0.00406 
0.00263 

0.0660 
0.0155 
0.0251 
0.0059 
0.0064 
0.0046 

0,0109 
0.0344 
0.0100 
0.00219 
0.00215 
0.00187 



Table 4.5 

.30 x 

.07 x lo-= 

.07 X 

.19 x 10- 

- inversion algorithms, has noted that "for some ill-conditioned matrices accum- 

ulation of error  may extend to every significant digit in the final results of the 

calculations with little o r  no indication that the output is erroneous [Longley, 

19671. Examining the RMS error  in inversion, it appears that for satellite 

trails of the length found on BC-4 plates, and for the precision and algorithms 

used by the short arc adjustment program, only about one significant decimal 
.. 

digit may be expected in the inverse of the Nk matrices. The possibility that 

the numerical error  may be even worse at times was illustrated by the fact 

that negative numbers were found on the main diagonal of the computed inverse 

of these positive definite matrices in a few instances. Orbits for which this 

happened were always deleted from the data set. 

The condition of the matrix of reduced normal equations is not especially 

bad, and its inversion certainly does not appear to present any problems. How- 

every, this fact does not eliminate the problem of numerical error. Experience 

indicates that the magnitude of the elements of N,K;N: is about the same as, 
- * *  - 
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or  only slightly less than, that of the elements of N. Thus the elements of the 

reduced normal equations may contain only one o r  two significant digits, and the 

inverse cannot then be any better. Of even more concern is the possibility that 

the constant column of the reduced normal equations, computed according to the 

expression K - C Nk N; &, may suffer a similar severe loss of significant digits. 
- .. 

k .. 
The possibility that the condition of the Nk matrices could be improved 

by writing the observation and normal equations in terms of a different set cf 

orbit unknowns was also investigated. The programs were rewritten so that the 

orbit unknowns were the rectangular position and velocity vectors at epoch, 

X, , Xo. NO significant improvement in the r;i, matrices was found when these 

unknowns were used, nor was there any significant change in the rate of con- 

vergence of the solution. 

There are several ways of coping with the problem of numerical error. 

The precision of the computations may be extended, or  an algorithm which is 

less effected by ill-conditioning may be selected. It has been noted that the 

class of orthogonalization methods of matrix inversion is generally much superior 

to the class of elimination methods in this regard [Longley, 1967).  On the 

other hand, one could only accept arcs which span at least 30' of mean anomaly 

(1/12 revolution) , although this would impose severe restrictions on what 

constitutes a short arc. 
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5. Conclusion 

Throughout this rep0 d 

to the corresponding geometric mode of adjustment from 

many respects, the orbital mode adjus 

program, run, and analyze. It requires the selection of a model for the orbit 

and careful analysis to ascertain that the model is valid for the type of obser- 

vations, type of orbit, and length of pass to be processed. It requires the 

development of fairly complicated preprocessing program to produce a good 

set of approximate orbit elements. It is plagued by problems of ill-conditioning, 

and the results it produces require careful skilled analysis to assure that 

they are valid. The seemingly most important advantage of the orbital mode 

adjustment is that it must produce a stronger solution from the same 'set of 

data; however, the amount of this strengthening was not found to be significant, 

at least not for direction observations typical of the BC-4 cameras, when the 

same set of observations were adjusted in both modes. 

There are  a few instances in which the use of the orbital mode may allow 

the use of a significant amount of data that is otherwise unusable. 

the optical beacon of the GEOS-A satellite was programmed to produce several 

sequences of flashes as the satellite passed over the continental United States, 

These flashes were observed principally by MOTS and PC-1000 cameras. All 

of these flashes may be tied together by the orbit when the data is adjusted in 

the short arc mode. For many flash sequences, only a single station was able 

For example, 
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to obtain successful photography, the photography that was scheduled to be taken 

from other stations being lost due to cloud cover o r  other reasons. In the short 

arc mode these single (unmatched) plates could be used and would strengthen the 

solution. This fact would be of more importance were there not also a sufficient 

number of passes on which successful MOTS and PC-1000 photography was ob- 

tained QE all gash sequences. 

By comparison with the geometric mode, the orbital mode is at least seen 

to be a valid form of adjustment, The fact that the two adjustments gave almost 

identical solutions when the same set of data wsls used in both indicates that it 

is possible to suppress the modeling error  below the level of the observational 

error,  and to obtain a valid solution in the orbital mode in spite of the ill-condition- 

ing problem, In all of the experiments performed with the BC-4 data, the 

orbital model was  the simple Keplerian orbit, This indicates that the Keplerian 

orbit suffices for direction observations with an accuracy of 1'!5-2!0 (about as 

good as can be obtained for a single image with present optical equipment); how- 

ever, it may not be good enough for range observations. Since a typical slant 

range to the PAGEOS satellite is 5000km, the linear uncertainty of a single 

BC-4 image is 30-40 meters. Range observations, such as those produced by 

the SECOR equipment, may be an order of magnitude better than this. In general, 

it appears that the most appropriate model for short arcs is a numerical inte- 

gration of a force function derived from a truncated expression of the geopotential. 

This model has the advantage that short period and secular effects of the J, 

harmonic are completely accounted for, so that the model very closely matches 
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the actual orbit, at least for short periods of time. Since it is only necessary 

to integrate the orbit through a short period of time, and since many satellite 

positions are needed, the machine time necessary to perform the numerical 

integration is not much greater than that for a Keplerian orbit. Models utilizing 

numerical integration of a force function derived from a truncated geopotential 

are used by D. Brown Associates in their NEO-EMBET series of programs and 

by Cubic Corporation in programs developed for the processing of SECOR data. 

One aspect of the adjustment of geodetic satellite data that has not 

been discussed in this report is the possibility of error  modeling, where certain 

systematic errors  in the observations are modeled and the y ihown  parameters 

in these models are solved for along with all other unlmom~s in the adjustment. 

Error modeling is probably never necessary for optical direction observations, 

since most errors  affecting these observations are well known and can be 

removed. On the other hand, systematic effects such as frequency drift, zero- 

set error,  etc. , may be quite significant in electronic measurements. If error  

models are utilized, orbital constraints may become quite necessary, since 

the elimination of the satellite position unknowns allows the addition of new 

unknowns, such as the coefficients of the error  models. 

Although the orbital mode adjustment possesses many advantages over 

the geometrical mode, few of these advantages are often realized to a significant 

degree in practice. However, since it is always capable of proclucing a so1,ution 

that is at least as good as the geometrical mode solution, the orbitd mode 

adjustment does offer a valuable tool fcir comparison and m-alysis, and in some 
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cases may be the clearly superior method of adjustment of geodetic satellite 

data. 
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Appendix 
Explicit Form of Matrices Arising in the Observation Equations 

I 0 -sint' cost' 
R'COS 6' R cosij' 

COS 6' - - -cost' sin 6' -sint 'sjns' -- 
R' R' R' 

where t'= 01'- $ and is the Greenwich Apparent Sidered Tinae 

\ O  0 l I  

-R cos6 sint  -R sin6 cost cos6 cost 

R cos6 cost -R s i n 6  sint  cos6 sin t 

0 R cos 6 sin 6 

where t = 01 - 9 
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w h e r e  xp , yp are the components of polar motion. 

aa 
a@ 

an. 
aa 
a1 
a@ 

a@ 
aM 

a@ 
aa 

a6 - - U(2,1) = 

a6 U(2,2) = - - an. 
a6 = U(2,3) = 

U ( 1 , l )  = - = 

U(1,2)  = - - 

V(1,8) = - = 

- aa! 

U(1,4) = = 

U(1,5) = - = 

U(1,6) = - = 

- 

U(2,4) = a =  
ae 

a6 
aM 

a6 
aa 

aR 
aw 
i3R 
an 
3R 
a1 
aR 
ae 

U(2,5)  = - ;= 

U(2,6)  = - = 

U ( 3 , l )  = - = 

- U(3,2) = - - 

U(3,3) = - = 

U(3,4) = - = 

cos i sec2 8 

1 

-cos (or - 0)  sin(@ - Q) tani 

) 
cosi sinf l , , ,  + 1 

cosi , ,.jq~ 
cos26 (1-e cos E)2 

~ 0 s 2 6  $-ea l - e c a s ~  

F 

0 

sini  COS (a - C2) 

0 

sin (a - 0) 

r- 

Jl-e2 sin i cos(@- 0,) (1-e cos E)2 

0 

0 

0 

0 

ate-cos E) 
1-e cos E 

ae  s inE aR 
aM 1-e cosE U(3,5) = - = 
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U(3,6) = e-- -= (1-ecosE) 
2% 

where E is the eccentric anomaly and f is the true anomaly. 

j = 1-4 

j = 5 , 6  

j = 2-4 
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j =2-4 

j = 1, 5-6 

j = 1-6 
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